Single-Feature Method for Fast Atrial Fibrillation Detection in ECG Signals
dc.contributor.author | Maršánová, Lucie | cs |
dc.contributor.author | Němcová, Andrea | cs |
dc.contributor.author | Smíšek, Radovan | cs |
dc.contributor.author | Smital, Lukáš | cs |
dc.contributor.author | Vítek, Martin | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 47 | cs |
dc.date.accessioned | 2021-05-06T10:55:00Z | |
dc.date.available | 2021-05-06T10:55:00Z | |
dc.date.issued | 2020-12-28 | cs |
dc.description.abstract | Atrial fibrillation (AF) is the most common arrhthmia in adults and is associated with higher risk of heart failure or death. Here, we introduce simple and efficient method for automatic AF detection based on symbolic dynamics and Shannon entropy. This method comprises of three parts. Firstly, QRS complex detection is provided, than the raw RR sequence is transformed into a sequence of specific symbols and subsequently into a word sequence and finally, Shannon entropy of the word sequence is calculated. According to the value of Shannon entropy, it is decided, whether AF is present in the current cardiac beat. We achieved sensitivity Se=96.32% and specificity Sp=98.61 on MIT-BIH Atrial Fibrillation database, Se=91.30% and Sp=90.80% on MIT-BIH Arrhythmia database, Se=95.6% and Sp=80.27% for CinC Challenge database 2020. The achieved results of our one-feature method are comparable with other authors of more complicated and computationally expensive methods. | en |
dc.format | text | cs |
dc.format.extent | 1-4 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Computing in Cardiology. 2020, vol. 47, issue 1, p. 1-4. | en |
dc.identifier.doi | 10.22489/CinC.2020.335 | cs |
dc.identifier.issn | 2325-887X | cs |
dc.identifier.other | 166074 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/196703 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | Computing in Cardiology | cs |
dc.relation.uri | http://www.cinc.org/archives/2020/pdf/CinC2020-335.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2325-887X/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | ECG | en |
dc.subject | atrial fibrillation | en |
dc.subject | phasor transform | en |
dc.subject | symbolic dynamic | en |
dc.title | Single-Feature Method for Fast Atrial Fibrillation Detection in ECG Signals | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-166074 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2021.05.06 12:55:00 | en |
sync.item.modts | 2021.05.06 12:14:48 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- CinC2020335.pdf
- Size:
- 431.36 KB
- Format:
- Adobe Portable Document Format
- Description:
- CinC2020335.pdf