Single-Feature Method for Fast Atrial Fibrillation Detection in ECG Signals

Loading...
Thumbnail Image

Authors

Šaclová, Lucie
Němcová, Andrea
Smíšek, Radovan
Smital, Lukáš
Vítek, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Atrial fibrillation (AF) is the most common arrhthmia in adults and is associated with higher risk of heart failure or death. Here, we introduce simple and efficient method for automatic AF detection based on symbolic dynamics and Shannon entropy. This method comprises of three parts. Firstly, QRS complex detection is provided, than the raw RR sequence is transformed into a sequence of specific symbols and subsequently into a word sequence and finally, Shannon entropy of the word sequence is calculated. According to the value of Shannon entropy, it is decided, whether AF is present in the current cardiac beat. We achieved sensitivity Se=96.32% and specificity Sp=98.61 on MIT-BIH Atrial Fibrillation database, Se=91.30% and Sp=90.80% on MIT-BIH Arrhythmia database, Se=95.6% and Sp=80.27% for CinC Challenge database 2020. The achieved results of our one-feature method are comparable with other authors of more complicated and computationally expensive methods.
Atrial fibrillation (AF) is the most common arrhthmia in adults and is associated with higher risk of heart failure or death. Here, we introduce simple and efficient method for automatic AF detection based on symbolic dynamics and Shannon entropy. This method comprises of three parts. Firstly, QRS complex detection is provided, than the raw RR sequence is transformed into a sequence of specific symbols and subsequently into a word sequence and finally, Shannon entropy of the word sequence is calculated. According to the value of Shannon entropy, it is decided, whether AF is present in the current cardiac beat. We achieved sensitivity Se=96.32% and specificity Sp=98.61 on MIT-BIH Atrial Fibrillation database, Se=91.30% and Sp=90.80% on MIT-BIH Arrhythmia database, Se=95.6% and Sp=80.27% for CinC Challenge database 2020. The achieved results of our one-feature method are comparable with other authors of more complicated and computationally expensive methods.

Description

Citation

Computing in Cardiology. 2020, vol. 47, issue 1, p. 1-4.
http://www.cinc.org/archives/2020/pdf/CinC2020-335.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO