Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images

Loading...
Thumbnail Image
Date
2022-05-24
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
NATURE PORTFOLIO
Altmetrics
Abstract
The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (mu CT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of mu CT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
Description
Citation
Scientific Reports. 2022, vol. 12, issue 1, p. 1-13.
https://www.nature.com/articles/s41598-022-12329-8
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO