Comparison of Generative and Discriminative Approaches for Speaker Recognition with Limited Data

dc.contributor.authorSilovsky, Jan
dc.contributor.authorCerva, Petr
dc.contributor.authorZdansky, Jindrich
dc.coverage.issue3cs
dc.coverage.volume18cs
dc.date.accessioned2016-03-17T14:04:42Z
dc.date.available2016-03-17T14:04:42Z
dc.date.issued2009-09cs
dc.description.abstractThis paper presents a comparison of three different speaker recognition methods deployed in a broadcast news processing system. We focus on how the generative and discriminative nature of these methods affects the speaker recognition framework and we also deal with intersession variability compensation techniques in more detail, which are of great interest in broadcast processing domain. Performed experiments are specific particularly for the very limited amount of data used for both speaker enrollment (typically ranging from 30 to 60 seconds) and recognition (typically ranging from 5 to 15 seconds). Our results show that the system based on Gaussian Mixture Models (GMMs) outperforms both systems based on Support Vector Machines (SVMs) but its drawback is higher computational cost.en
dc.formattextcs
dc.format.extent307-316cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2009, vol. 18, č. 3, s. 307-316. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/57113
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2009/09_03_307_316.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectSpeaker recognitionen
dc.subjectGaussian Mixture Models (GMM)en
dc.subjectSupport Vector Machines (SVM)en
dc.subjectbroadcast processingen
dc.titleComparison of Generative and Discriminative Approaches for Speaker Recognition with Limited Dataen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09_03_307_316.pdf
Size:
3.56 MB
Format:
Adobe Portable Document Format
Description:
Collections