Generování trénovacích dat pomocí GAN pro odhad věku z fotografie

Loading...
Thumbnail Image

Date

Authors

Venkrbec, Tomáš

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce je implementace některé z nejmodernějších metod generativních neuronových sítí a návrh jejího rozšíření o podmíněné generování. To bylo využito pro generování fotorealistických snímků lidských tváří se specifikovanými charakteristikami, jako například věk a pohlaví. K tomuto účelu byla sloučením a čištěním existujících anotovaných datových sad obličejů vytvořena velmi různorodá datová sada, čítající přes 230 tisíc vzorků. Hojně jsou v ní zastoupeny všechny věkové kategorie, pohlaví a různé etnické skupiny. StyleGAN2 generátorem natrénovaným na této datové sadě bylo dosaženo hodnoty FID 7,14. S poměrem syntetických dat bylo následně experimentováno při trénování klasifikátoru věku. V případě testovací podmnožiny datové sady bylo přidáním syntetických dat docíleno snížení střední absolutní chyby z 3,499 roku na 3,294 roku. U nezávislé testovací datové sady došlo ke snížení průměrné chyby z 4,012 roku na 3,875 roku.
The goal of this thesis is to implement one of the state-of-the-art methods of generative adversarial networks and to propose its extension to conditional generation. This has been used to generate photorealistic images of human faces with specified characteristics such as age and gender. For this purpose, a highly diverse dataset of over 230,000 samples was created by merging and cleaning existing annotated face datasets. All ages, genders and different ethnic groups are well represented in it. StyleGAN2 generator trained on this dataset achieved a FID of 7.14. The synthetic data ratio was then experimented with during age classifier training. For the test subset of the dataset, the addition of synthetic data achieved a reduction in the mean absolute error from 3.499 years to 3.294 years. For the independent test dataset, a reduction in mean error from 4.012 years to 3.875 years was achieved.

Description

Citation

VENKRBEC, T. Generování trénovacích dat pomocí GAN pro odhad věku z fotografie [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Strojové učení

Comittee

prof. Dr. Ing. Jan Černocký (předseda) doc. Ing. Lukáš Burget, Ph.D. (člen) doc. RNDr. Milan Češka, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) Ing. Jaroslav Rozman, Ph.D. (člen) Ing. František Grézl, Ph.D. (člen)

Date of acceptance

2023-06-19

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO