Efficient Method for Solving TM-Polarized Plane Wave Scattering from Two-Dimensional Perfect Conductor Surfaces Using Fourier Series Approximation of the Green’s Function

Loading...
Thumbnail Image

Authors

Ahmad, Mohammad

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

The method of moments generates a matrix which is usually solved using iterative methods due to the high computational complexity of a direct inversion. The cost of matrix-vector multiplications and memory requirement at each iteration step is proportional to O(N2), where N is the number of unknowns in the problem. To reduce the computational complexity, the Green’s function is approximated using Fourier series. This will allow to separate the source points from the observation points. Hence, aggregate all source points and then multiply it with each observation point with a small adjustment in the aggregation term. The proposed method is tested by solving electromagnetic wave scattering from perfect conductor two-dimensional basic canonical shape, i.e., circular cylinder. The results showed that the proposed method is accurate and for large N it has a computational complexity less than the direct matrix-vector multiplication.

Description

Citation

Radioengineering. 2021 vol. 30, č. 4, s. 611-616. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2021/21_04_0611_0616.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO