Discrete Frequency and Phase Coding Waveform for MIMO Radar

Loading...
Thumbnail Image

Authors

Chang, Guanghong
Yu, Xiaoxi
Yu, Changjun

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

In multi-input multi-output (MIMO) radar system, good orthogonality between transmitting waveforms will fairly simplify the signal processing, along with improve the targets detection as well as the parameters estimation performance of the system. In this paper, a discrete frequency and phase coding waveform (DFPCW), which attains good orthogonality by varying the carrier frequency and initial phase of each pulse in the pulse train, is designed. The theoretical derivations of ambiguity function (AF) and cross ambiguity function (CAF) of the DFPCW are also given. After then, a generic algorithm (GA) is applied by optimizing the carrier frequency code sequence and initial phase code sequence to minimize both the auto-correlation sidelobe peaks (ASP) and cross-correlation peaks (CP) of the waveforms. The simulation results demonstrate that DFPCW has better orthogonality and sidelobe property compared with the traditional discrete frequency coding waveform and widely employed frequency modulated continuous wave (FMCW), henceforth this new waveform may become to an alternative option for MIMO radar.

Description

Citation

Radioengineering. 2017 vol. 26, č. 3, s. 835-841. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2017/17_03_0835_0841.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO