Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells
| dc.contributor.author | Rubtsov, Sofia | cs |
| dc.contributor.author | Puravankara, Akshay | cs |
| dc.contributor.author | Laufer, Edi L. | cs |
| dc.contributor.author | Sobolev, Alexander | cs |
| dc.contributor.author | Kosenko, Alexey | cs |
| dc.contributor.author | Shishkov, Vasily | cs |
| dc.contributor.author | Shatalov, Mykola | cs |
| dc.contributor.author | Danchuk, Viktor | cs |
| dc.contributor.author | Zinigrad, Michael | cs |
| dc.contributor.author | Musin, Albina | cs |
| dc.contributor.author | Yadgarov, Lena | cs |
| dc.coverage.issue | 19 | cs |
| dc.coverage.volume | 15 | cs |
| dc.date.accessioned | 2026-02-17T13:53:47Z | |
| dc.date.issued | 2025-10-01 | cs |
| dc.description.abstract | We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading collectively influence device performance. Pre-annealing the BL increases its hydrophobicity, yielding smaller and denser AuNP microdots with an enhanced localized surface plasmon resonance (LSPR). Positioning the AuNP MDA at the BL/perovskite interface (above the BL) maximizes near-field plasmonic coupling to the absorber, resulting in higher photocurrent and power conversion devices; these trends are corroborated by finite-difference time-domain (FDTD) simulations. Moreover, these devices demonstrate better stability over time compared to those with AuNPs at the transparent electrode (under BL). Although higher AuNP concentrations improve dispersion stability, preserve MAPI crystallinity, and yield more uniform nanoparticle sizes, device measurements showed no performance gains. After annealing, the samples with the Au content of 23 wt% relative to TiO2 achieved optimal PSC efficiency by balancing plasmonic enhancement and charge transport without the increased resistance and recombination losses seen at higher loadings. Importantly, X-ray diffraction (XRD) confirms that introducing the TiO2-AuNP MDA at the interface does not disrupt the perovskite's crystal structure, underscoring the structural compatibility of this plasmonic enhancement. Overall, our findings highlight a scalable strategy to boost PSC efficiency via engineered light-matter interactions at the nanoscale without compromising the perovskite's structural integrity. | en |
| dc.format | text | cs |
| dc.format.extent | 1-21 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Nanomaterials. 2025, vol. 15, issue 19, p. 1-21. | en |
| dc.identifier.doi | 10.3390/nano15191501 | cs |
| dc.identifier.issn | 2079-4991 | cs |
| dc.identifier.orcid | 0000-0003-0214-3059 | cs |
| dc.identifier.orcid | 0000-0002-7276-1410 | cs |
| dc.identifier.orcid | 0000-0001-5824-1462 | cs |
| dc.identifier.orcid | 0000-0002-8986-0124 | cs |
| dc.identifier.orcid | 0000-0001-7381-7482 | cs |
| dc.identifier.other | 199505 | cs |
| dc.identifier.researcherid | DPU-3213-2022 | cs |
| dc.identifier.researcherid | LBV-9695-2024 | cs |
| dc.identifier.researcherid | OOP-8696-2025 | cs |
| dc.identifier.researcherid | AAU-2284-2021 | cs |
| dc.identifier.researcherid | OPL-8168-2025 | cs |
| dc.identifier.researcherid | FWA-4830-2022 | cs |
| dc.identifier.researcherid | JNA-0681-2023 | cs |
| dc.identifier.researcherid | OPH-1131-2025 | cs |
| dc.identifier.researcherid | AAV-1110-2020 | cs |
| dc.identifier.researcherid | GFS-5454-2022 | cs |
| dc.identifier.researcherid | W-5437-2019 | cs |
| dc.identifier.uri | https://hdl.handle.net/11012/256272 | |
| dc.language.iso | en | cs |
| dc.publisher | MDPI | cs |
| dc.relation.ispartof | Nanomaterials | cs |
| dc.relation.uri | https://www.mdpi.com/2079-4991/15/19/1501 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2079-4991/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | perovskite solar cell | en |
| dc.subject | plasmonic enhancement | en |
| dc.subject | gold nanoparticles | en |
| dc.subject | finite-difference time-domain (FDTD) simulations | en |
| dc.subject | inkjet printing | en |
| dc.subject | interface engineering | en |
| dc.title | Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-199505 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2026.02.17 14:53:47 | en |
| sync.item.modts | 2026.02.17 14:32:17 | en |
| thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1 | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- nanomaterials1501501.pdf
- Size:
- 5.68 MB
- Format:
- Adobe Portable Document Format
- Description:
- file nanomaterials1501501.pdf
