New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern

dc.contributor.authorKůdela, Jakubcs
dc.contributor.authorMatoušek, Radomilcs
dc.coverage.issue1cs
dc.coverage.volume10cs
dc.date.accessioned2022-01-28T15:54:34Z
dc.date.available2022-01-28T15:54:34Z
dc.date.issued2022-01-20cs
dc.description.abstractBenchmarking plays a crucial role in both development of new optimization methods, and in conducting proper comparisons between already existing methods, particularly in the field of evolutionary computation. In this paper, we develop new benchmark functions for bound-constrained single-objective optimization that are based on a zigzag function. The proposed zigzag function has three parameters that control its behaviour and difficulty of the resulting problems. Utilizing the zigzag function, we introduce four new functions and conduct extensive computational experiments to evaluate their performance as benchmarks. The experiments comprise of using the newly proposed functions in 100 different parameter settings for the comparison of eight different optimization algorithms, which are a mix of canonical methods and best performing methods from the Congress on Evolutionary Computation competitions. Using the results from the computational comparison, we choose some of the parametrization of the newly proposed functions to devise an ambiguous benchmark set in which each of the problems introduces a statistically significant ranking among the algorithms, but the ranking for the entire set is ambiguous with no clear dominating relationship between the algorithms. We also conduct an exploratory landscape analysis of the newly proposed benchmark functions and compare the results with the benchmark functions used in the Black-Box-Optimization-Benchmarking suite. The results suggest that the new benchmark functions are well suited for algorithmic comparisons.en
dc.formattextcs
dc.format.extent8262-8278cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2022, vol. 10, issue 1, p. 8262-8278.en
dc.identifier.doi10.1109/ACCESS.2022.3144067cs
dc.identifier.issn2169-3536cs
dc.identifier.other176022cs
dc.identifier.urihttp://hdl.handle.net/11012/203516
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://ieeexplore.ieee.org/document/9684455cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectnumerical optimizationen
dc.subjectbenchmarkingen
dc.subjectsingle objective problemsen
dc.subjectexploratory landscape analysisen
dc.titleNew Benchmark Functions for Single-Objective Optimization Based on a Zigzag Patternen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-176022en
sync.item.dbtypeVAVen
sync.item.insts2022.06.15 16:53:51en
sync.item.modts2022.06.15 16:14:10en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New_Benchmark_Functions_for_SingleObjective_Optimization_Based_on_a_Zigzag.pdf
Size:
7.51 MB
Format:
Adobe Portable Document Format
Description:
New_Benchmark_Functions_for_SingleObjective_Optimization_Based_on_a_Zigzag.pdf