Detekce patologií na snímcích sítnice oka

Loading...
Thumbnail Image

Date

Authors

Hurta, David

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce je návrh a implementace algoritmu detekce mikroaneuryzmat, tvrdých exsudátů a měkkých exsudátů na barevných snímcích sítnice.  Byl navržen algoritmus detekce objektů na základě hlubokého učení. Byla použita architektura Faster R-CNN s příznakovou pyramidovou sítí a předem vyučenou reziduální sítí společně s různými metodami transformace dat. Bylo využito celkově šesti datových sad snímků sítnic k trénování, ověřování a testování modelů. Vyučené modely dosáhly během testování hodnoty 0.46 střední průměrné přesnosti (mAP) při detekci mikroaneuryzmat a hodnoty 0.48 mAP během detekce exsudátů. Výsledné modely byly porovnány s publikovanými články a umožňují s chvályhodnou přesností detekovat dané patologie.
The main goal of this work is to design and implement an algorithm for the detection of microaneurysms, hard exudates, and soft exudates on color fundus images. An algorithm for detecting objects based on deep learning has been proposed. The Faster R-CNN architecture with a feature pyramid network and a pre-pretrained residual network was used together with various data transformation methods. A total of six retinal image datasets were used to train, validate and test the models. The trained models achieved 0.46 mean average accuracy (mAP) in microaneurysm detection and 0.48 mAP in exudates detection during testing. The resulting models have been compared with published articles and make it possible to detect given pathologies with commendable accuracy.

Description

Citation

HURTA, D. Detekce patologií na snímcích sítnice oka [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2022.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Ing. Lukáš Sekanina, Ph.D. (předseda) doc. Ing. Jiří Jaroš, Ph.D. (místopředseda) Ing. Michal Hradiš, Ph.D. (člen) Ing. Zbyněk Křivka, Ph.D. (člen) Ing. Ondřej Lengál, Ph.D. (člen)

Date of acceptance

2022-06-14

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. Otázky u obhajoby: Jakým způsobem se zachová Vaše řešení v případě překryvu více onemocnění přes sebe (např. krvácení do exsudátu)? Zvládne Vaše řešení fotokoagulační zásahy do sítnice oka? Nedojde zde k falešným detekcím?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO