Multilayered Stub Loaded-SIR for Compact Dual-BPF and Quad-channel Diplexer Design

Loading...
Thumbnail Image

Authors

Ajeel, S. L.
Hammed, R. T.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Radioengineering society

ORCID

Altmetrics

Abstract

This paper considers a novel design technique of compact dual-BPF and four-channel diplexer for a multi-service communication system. The suggested dual-band passband filter is constructed by a double-layered stub loaded-stepped impedance resonator (SL-SIR), leading to a tiny circuit area, and lightweight, low cost, and good characteristic performance. Herein, the SL-SIR resonant odd-mode is used to realize the first passband, while the resonant even-mode is used to realize the second passband. Also, the proposed three-port quad-channel diplexer is performed by two different double-layered dual-passband filters, which also have a very compact circuit area. For practical verification, a two-passband filter working at 2.5/4 GHz with a circuit area of 91.7〖mm〗^2 and a four-channel diplexer working at 2.5/4 GHz and 3.5/5.2 GHz with a circuit area of 0.0639 〖λ_g〗^2 excluding feeding ports are designed, manufactured, and measured. The electromagnetic simulated and measured responses are compared and discussed. Obviously, the comparison show good agreement improving the expected filtering response. The diplexer offers insertion/return losses of about (0.44/0.74) dB/(0.45/1.12) dB for channel 1/channel 2, and (21.30/21.72) dB/(19.81/20.54) dB for channel 3/channel 4.

Description

Citation

Radioengineering. 2024 vol. 33, iss. 4, s. 629-635. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2024/24_04_0629_0635.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO