Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition
dc.contributor.author | Štrbková, Lenka | cs |
dc.contributor.author | Carson, Brittany B. | cs |
dc.contributor.author | Vincent, Theresa | cs |
dc.contributor.author | Veselý, Pavel | cs |
dc.contributor.author | Chmelík, Radim | cs |
dc.coverage.issue | 8 | cs |
dc.coverage.volume | 25 | cs |
dc.date.issued | 2020-08-31 | cs |
dc.description.abstract | Significance: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. Aim: We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. Approach: The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. Results: In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. Conclusions: Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. | en |
dc.format | text | cs |
dc.format.extent | 1-18 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | JOURNAL OF BIOMEDICAL OPTICS. 2020, vol. 25, issue 8, p. 1-18. | en |
dc.identifier.doi | 10.1117/1.JBO.25.8.086502 | cs |
dc.identifier.issn | 1560-2281 | cs |
dc.identifier.orcid | 0000-0002-3550-4968 | cs |
dc.identifier.orcid | 0000-0003-3420-395X | cs |
dc.identifier.orcid | 0000-0001-5410-4794 | cs |
dc.identifier.other | 165957 | cs |
dc.identifier.researcherid | A-9490-2014 | cs |
dc.identifier.researcherid | D-9921-2012 | cs |
dc.identifier.researcherid | D-7616-2012 | cs |
dc.identifier.scopus | 56341534000 | cs |
dc.identifier.scopus | 6603192372 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/196571 | |
dc.language.iso | en | cs |
dc.publisher | SPIE | cs |
dc.relation.ispartof | JOURNAL OF BIOMEDICAL OPTICS | cs |
dc.relation.uri | https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-25/issue-08/086502/Automated-interpretation-of-time-lapse-quantitative-phase-image-by-machine/10.1117/1.JBO.25.8.086502.full?SSO=1 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1560-2281/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | digital holographic microscopy | en |
dc.subject | quantitative phase imaging | en |
dc.subject | supervised machine learning | en |
dc.subject | epithelial-mesenchymal transition | en |
dc.title | Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-165957 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:48:13 | en |
sync.item.modts | 2025.01.17 18:35:36 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 086502_1.pdf
- Size:
- 1.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- 086502_1.pdf