Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition
Loading...
Date
2020-08-31
Authors
Štrbková, Lenka
Carson, Brittany B.
Vincent, Theresa
Veselý, Pavel
Chmelík, Radim
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
SPIE
Altmetrics
Abstract
Significance: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. Aim: We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. Approach: The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. Results: In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. Conclusions: Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Description
Citation
JOURNAL OF BIOMEDICAL OPTICS. 2020, vol. 25, issue 8, p. 1-18.
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-25/issue-08/086502/Automated-interpretation-of-time-lapse-quantitative-phase-image-by-machine/10.1117/1.JBO.25.8.086502.full?SSO=1
https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-25/issue-08/086502/Automated-interpretation-of-time-lapse-quantitative-phase-image-by-machine/10.1117/1.JBO.25.8.086502.full?SSO=1
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en