BDF a BBDF pro řešení diferenciálních rovnic
but.committee | doc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) prof. Mgr. Pavel Řehák, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) doc. Mgr. et Mgr. Aleš Návrat, Ph.D. (člen) Mariapia Palombaro (člen) Gennaro Ciampa (člen) Matteo Colangeli (člen) Carmela Scalone (člen) | cs |
but.defence | The student presented her master's thesis on the topic: BDF and BBDF for solving Ordinary Differential Equations. After the presentation, the supervisor's and the opponent's reviews were read. The student has suitably answered all the opponent's and committee members' questions. | cs |
but.jazyk | angličtina (English) | |
but.program | Applied and Interdisciplinary Mathematics | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Zatočilová, Jitka | en |
dc.contributor.author | Elusakin, Opeyemi Racheal | en |
dc.contributor.referee | Tomášek, Petr | en |
dc.date.created | 2024 | cs |
dc.description.abstract | his thesis explores the Backward Differentiation Formula (BDF) and Block Backward Differentiation Formula (BBDF) methods for solving stiff ordinary differential equations (ODEs). BDF methods are known for their stability, which makes them effective for stiff problems, while BBDF methods enhance this by solving multiple steps simultaneously, improving both efficiency and stability. The research delves into the derivation, implementation, and analysis of these methods, with a focus on their stability and convergence characteristics. We derive BDF and BBDF methods from fundamental principles, Stability analysis is conducted using techniques such as the root locus method and stability region characterization. Numerical experiments are conducted to validate the theoretical findings, comparing the performance of BDF and BBDF methods of several variants . The results demonstrate the better stability and efficiency of BBDF methods in solving ODEs, . This work offers a comprehensive study of BDF and BBDF methods, providing insights into their practical applications and potential for further development. | en |
dc.description.abstract | his thesis explores the Backward Differentiation Formula (BDF) and Block Backward Differentiation Formula (BBDF) methods for solving stiff ordinary differential equations (ODEs). BDF methods are known for their stability, which makes them effective for stiff problems, while BBDF methods enhance this by solving multiple steps simultaneously, improving both efficiency and stability. The research delves into the derivation, implementation, and analysis of these methods, with a focus on their stability and convergence characteristics. We derive BDF and BBDF methods from fundamental principles, Stability analysis is conducted using techniques such as the root locus method and stability region characterization. Numerical experiments are conducted to validate the theoretical findings, comparing the performance of BDF and BBDF methods of several variants . The results demonstrate the better stability and efficiency of BBDF methods in solving ODEs, . This work offers a comprehensive study of BDF and BBDF methods, providing insights into their practical applications and potential for further development. | cs |
dc.description.mark | D | cs |
dc.identifier.citation | ELUSAKIN, O. BDF a BBDF pro řešení diferenciálních rovnic [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2024. | cs |
dc.identifier.other | 162483 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/249622 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | Stiff ordinary differential equations | en |
dc.subject | implicit linear multistep methods | en |
dc.subject | stability analysis | en |
dc.subject | convergence | en |
dc.subject | initial value problems | en |
dc.subject | Lagrange interpolation polynomials | en |
dc.subject | backward differentiation formula (BDF) | en |
dc.subject | block backward differentiation formula (BBDF) | en |
dc.subject | stability polynomial | en |
dc.subject | order | en |
dc.subject | Matlab | en |
dc.subject | Stiff ordinary differential equations | cs |
dc.subject | implicit linear multistep methods | cs |
dc.subject | stability analysis | cs |
dc.subject | convergence | cs |
dc.subject | initial value problems | cs |
dc.subject | Lagrange interpolation polynomials | cs |
dc.subject | backward differentiation formula (BDF) | cs |
dc.subject | block backward differentiation formula (BBDF) | cs |
dc.subject | stability polynomial | cs |
dc.subject | order | cs |
dc.subject | Matlab | cs |
dc.title | BDF a BBDF pro řešení diferenciálních rovnic | en |
dc.title.alternative | BDF and BBDF for solving Ordinary Differential Equations | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2024-10-04 | cs |
dcterms.modified | 2024-10-10-07:52:17 | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
sync.item.dbid | 162483 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.27 10:46:40 | en |
sync.item.modts | 2025.01.15 15:59:16 | en |
thesis.discipline | bez specializace | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 814.66 KB
- Format:
- Adobe Portable Document Format
- Description:
- file final-thesis.pdf
Loading...
- Name:
- appendix-1.zip
- Size:
- 13.03 KB
- Format:
- Unknown data format
- Description:
- file appendix-1.zip
Loading...
- Name:
- review_162483.html
- Size:
- 9.85 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_162483.html