Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks
Loading...
Date
2024-12-16
Authors
Kouakouo Nomvussi, Serge Ayme
Mikulka, Jan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Sciendo
Altmetrics
Abstract
This paper presents a novel cascade algorithm for image reconstruction in electrical impedance tomography (EIT) using radial basis function neural networks. The first subnetwork applies a density-based algorithm and k-nearest neighbors (KNN) to determine the center and width of the radial basis function neural networks, with the aim of preventing ill-conditioned connection weights between the hidden and output layers. The second subnetwork is a generalized regression neural network dedicated to functional approximation. The combined subnetworks result in a reduced mean square error and achieve an accuracy of 89.54 % without noise and an accuracy between 82.90 % and 89.53 % with noise levels ranging from 30 to 60 dB. In comparison, the original radial basis function neural networks (RBFNN) method achieves an accuracy of 85.44 % without noise and between 80.90 % and 85.31 % under similar noise conditions. The total variation (TV) method achieves 83.13 % without noise, with noise-influenced accuracy ranging from 34.28 % to 45.15 %. The Gauss-Newton method achieves 82.35 % accuracy without noise, with accuracy ranging from 33.21 % to 46.15 % in the presence of noise. The proposed method proves to be resilient to various types of noise, including white Gaussian noise, impulsive noise, and contact noise, and consistently delivers superior performance. It also outperforms the other methods in noise-free conditions. The reliability of the method in noisy environments supports its potential application in the development of new modular systems for electrical impedance tomography.
Description
Citation
Measurement Science Review. 2024, vol. 24, issue 6, p. 200-210.
https://sciendo.com/article/10.2478/msr-2024-0027
https://sciendo.com/article/10.2478/msr-2024-0027
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/