Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective

Loading...
Thumbnail Image

Authors

Urso, Mario
Pumera, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley VCH
Altmetrics

Abstract

The growing use of plastic materials has led to the continuous accumulation of wastes in marine environments, which fragment into hazardous micro-and nanoplastics. These plastic particles absorb toxic organic pollutants on their surface, support bacterial biofilms growth, and propagate through the food chain, posing serious risks for human health. Therefore, nano/microplastics pollution has become a global issue, making their definitive elimination compulsory. Self-propelled nano/microrobots have demonstrated efficient removal of nano/microplastics from water, combining enhanced physicochemical properties of nano/microscale materials and active motion. During the last year, the potential of this technology to degrade nano/microplastics has been investigated. Here, the most advanced strategies for nano/microplastics capture and subsequent degradation by autonomous nano/microrobots are critically reviewed. A short introduction to the main propulsion mechanisms and experimental techniques for studying nano/microplastics degradation is also provided. Forthcoming challenges in this research field are discussed proactively. This perspective inspires future nano/microrobotic designs and approaches for water purification from nano/microplastics and other emerging pollutants.
The growing use of plastic materials has led to the continuous accumulation of wastes in marine environments, which fragment into hazardous micro-and nanoplastics. These plastic particles absorb toxic organic pollutants on their surface, support bacterial biofilms growth, and propagate through the food chain, posing serious risks for human health. Therefore, nano/microplastics pollution has become a global issue, making their definitive elimination compulsory. Self-propelled nano/microrobots have demonstrated efficient removal of nano/microplastics from water, combining enhanced physicochemical properties of nano/microscale materials and active motion. During the last year, the potential of this technology to degrade nano/microplastics has been investigated. Here, the most advanced strategies for nano/microplastics capture and subsequent degradation by autonomous nano/microrobots are critically reviewed. A short introduction to the main propulsion mechanisms and experimental techniques for studying nano/microplastics degradation is also provided. Forthcoming challenges in this research field are discussed proactively. This perspective inspires future nano/microrobotic designs and approaches for water purification from nano/microplastics and other emerging pollutants.

Description

Citation

ADVANCED FUNCTIONAL MATERIALS. 2022, vol. 32, issue 20, p. 1-12.
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202112120

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO