Box-Particle Implementation and Comparison of Cardinalized Probability Hypothesis Density Filter

Loading...
Thumbnail Image

Authors

Song, Li-ping
Liang, Meng
Ji, Hong-bing

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

This paper develops a box-particle implementation of cardinalized probability hypothesis density filter to track multiple targets and estimate the unknown number of targets. A box particle is a random sample that occupies a small and controllable rectangular region of nonzero volume in the target state space. In box-particle filter the huge number of traditional point observations is instead by a remarkably reduced number of interval measurements. It decreases the number of particles significantly and reduces the runtime considerably. The proposed algorithm based on box-particle is able to reach a similar accuracy to a Sequential Monte Carlo cardinalized probability hypothesis density (SMC-CPHD) filter with much less computational costs. Not only does it propagates the PHD, but also propagates the cardinality distribution of target number. Therefore, it generates more accurate and stable instantaneous estimates of target number as well as target state than the box-particle probability hypothesis density (BP-PHD) filter does especially in dense clutter environment. Comparison and analysis based on the simulations in different probability of detection and different clutter rate have been done. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.

Description

Citation

Radioengineering. 2016 vol. 25, č. 1, s. 177-186. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2016/16_01_0034_0039.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported License
Citace PRO