Privacy-Preserving Face Recognition Using Noised Eigenvectors

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorL'Horset, Bruce
dc.contributor.authorMailley, Charles
dc.contributor.authorChen, Elodie
dc.contributor.authorRicci, Sara
dc.date.accessioned2025-07-30T10:00:56Z
dc.date.available2025-07-30T10:00:56Z
dc.date.issued2025cs
dc.description.abstractWidespread face recognition systems raise significant privacy concerns due to potential data exposure, especially with centralized data storage. We propose a privacy-preserving framework integrating k-same pixelation, Principal Component Analysis (PCA), and Differential Privacy (DP). Our pipeline applies k-same smoothing for initial feature averaging, uses PCA for dimensionality reduction while preserving essential facial features, and adds Laplace noise to the resulting projection vectors to achieve DP. This method masks biometric information, operating efficiently in the lower-dimensional PCA space, aiming to balance privacy protection with the utility needed for identity verification. Evaluations on the LFW dataset quantitatively analyze this trade-off using MSE and SSIM metrics. Results confirm integrating DP enhances privacy. Crucially, experiments show adding noise to lower-dimensional projection vectors preserves utility better than noising higher-dimensional eigenfaces. We identified parameters (k=10, PCA ratio=0.19, ϵn=0.24) yielding a practical balance (Avg. MSE 1499, Avg. SSIM 0.38), enabling effective machine recognition on the anonymized data and demonstrating the framework’s viability.en
dc.formattextcs
dc.format.extent165-168cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 165-168. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255271
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectK-Same Pixelen
dc.subjectEigenfaceen
dc.subjectLaplace Noise Additionen
dc.subjectDifferential Privacyen
dc.subjectFacial Recognitionen
dc.subjectBiometric Authenticationen
dc.titlePrivacy-Preserving Face Recognition Using Noised Eigenvectorsen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
165-LHorset.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format