Privacy-Preserving Face Recognition Using Noised Eigenvectors
| but.event.date | 29.04.2025 | cs |
| but.event.title | STUDENT EEICT 2025 | cs |
| dc.contributor.author | L'Horset, Bruce | |
| dc.contributor.author | Mailley, Charles | |
| dc.contributor.author | Chen, Elodie | |
| dc.contributor.author | Ricci, Sara | |
| dc.date.accessioned | 2025-07-30T10:00:56Z | |
| dc.date.available | 2025-07-30T10:00:56Z | |
| dc.date.issued | 2025 | cs |
| dc.description.abstract | Widespread face recognition systems raise significant privacy concerns due to potential data exposure, especially with centralized data storage. We propose a privacy-preserving framework integrating k-same pixelation, Principal Component Analysis (PCA), and Differential Privacy (DP). Our pipeline applies k-same smoothing for initial feature averaging, uses PCA for dimensionality reduction while preserving essential facial features, and adds Laplace noise to the resulting projection vectors to achieve DP. This method masks biometric information, operating efficiently in the lower-dimensional PCA space, aiming to balance privacy protection with the utility needed for identity verification. Evaluations on the LFW dataset quantitatively analyze this trade-off using MSE and SSIM metrics. Results confirm integrating DP enhances privacy. Crucially, experiments show adding noise to lower-dimensional projection vectors preserves utility better than noising higher-dimensional eigenfaces. We identified parameters (k=10, PCA ratio=0.19, ϵn=0.24) yielding a practical balance (Avg. MSE 1499, Avg. SSIM 0.38), enabling effective machine recognition on the anonymized data and demonstrating the framework’s viability. | en |
| dc.format | text | cs |
| dc.format.extent | 165-168 | cs |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.citation | Proceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 165-168. ISBN 978-80-214-6321-9 | cs |
| dc.identifier.isbn | 978-80-214-6321-9 | |
| dc.identifier.uri | https://hdl.handle.net/11012/255271 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.relation.ispartof | Proceedings I of the 31st Conference STUDENT EEICT 2025: General papers | en |
| dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdf | cs |
| dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.rights.access | openAccess | en |
| dc.subject | K-Same Pixel | en |
| dc.subject | Eigenface | en |
| dc.subject | Laplace Noise Addition | en |
| dc.subject | Differential Privacy | en |
| dc.subject | Facial Recognition | en |
| dc.subject | Biometric Authentication | en |
| dc.title | Privacy-Preserving Face Recognition Using Noised Eigenvectors | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
