Privacy-Preserving Face Recognition Using Noised Eigenvectors
Loading...
Date
Authors
L'Horset, Bruce
Mailley, Charles
Chen, Elodie
Ricci, Sara
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Abstract
Widespread face recognition systems raise significant privacy concerns due to potential data exposure, especially with centralized data storage. We propose a privacy-preserving framework integrating k-same pixelation, Principal Component Analysis (PCA), and Differential Privacy (DP). Our pipeline applies k-same smoothing for initial feature averaging, uses PCA for dimensionality reduction while preserving essential facial features, and adds Laplace noise to the resulting projection vectors to achieve DP. This method masks biometric information, operating efficiently in the lower-dimensional PCA space, aiming to balance privacy protection with the utility needed for identity verification. Evaluations on the LFW dataset quantitatively analyze this trade-off using MSE and SSIM metrics. Results confirm integrating DP enhances privacy. Crucially, experiments show adding noise to lower-dimensional projection vectors preserves utility better than noising higher-dimensional eigenfaces. We identified parameters (k=10, PCA ratio=0.19, ϵn=0.24) yielding a practical balance (Avg. MSE 1499, Avg. SSIM 0.38), enabling effective machine recognition on the anonymized data and demonstrating the framework’s viability.
Description
Citation
Proceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 165-168. ISBN 978-80-214-6321-9
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdf
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
