High-Conductivity Stoichiometric Titanium Nitride for Bioelectronics

dc.contributor.authorGablech, Imrichcs
dc.contributor.authorMigliaccio, Ludovicocs
dc.contributor.authorBrodský, Jancs
dc.contributor.authorHavlíček, Marekcs
dc.contributor.authorPodešva, Pavelcs
dc.contributor.authorHrdý, Radimcs
dc.contributor.authorEhlich, Jiřícs
dc.contributor.authorGryszel, Maciejcs
dc.contributor.authorGlowacki, Eric Danielcs
dc.coverage.issue4cs
dc.coverage.volume9cs
dc.date.accessioned2023-08-04T15:01:06Z
dc.date.available2023-08-04T15:01:06Z
dc.date.issued2023-02-02cs
dc.description.abstractBioelectronic devices such as neural stimulation and recording devices require stable low-impedance electrode interfaces. Various forms of nitridated titanium are used in biointerface applications due to robustness and biological inertness. In this work, stoichiometric TiN thin films are fabricated using a dual Kaufman ion-beam source setup, without the necessity of substrate heating. These layers are remarkable compared to established forms of TiN due to high degree of crystallinity and excellent electrical conductivity. How this fabrication method can be extended to produce structured AlN, to yield robust AlN/TiN bilayer micropyramids, is described. These electrodes compare favorably to commercial TiN microelectrodes in the performance metrics important for bioelectronics interfaces: higher conductivity (by an order of magnitude), lower electrochemical impedance, and higher capacitive charge injection with lower faradaicity. These results demonstrate that the Kaufman ion-beam sputtering method can produce competitive nitride ceramics for bioelectronics applications at low deposition temperatures.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Electronic Materials. 2023, vol. 9, issue 4, p. 1-11.en
dc.identifier.doi10.1002/aelm.202200980cs
dc.identifier.issn2199-160Xcs
dc.identifier.orcid0000-0003-4218-1287cs
dc.identifier.orcid0000-0002-5656-3158cs
dc.identifier.orcid0000-0002-1944-6067cs
dc.identifier.orcid0000-0002-4350-2655cs
dc.identifier.orcid0000-0003-0478-6875cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other182433cs
dc.identifier.researcheridH-7835-2016cs
dc.identifier.researcheridGYJ-6288-2022cs
dc.identifier.researcheridD-8410-2012cs
dc.identifier.scopus55091127400cs
dc.identifier.scopus57212587388cs
dc.identifier.scopus56530770400cs
dc.identifier.urihttp://hdl.handle.net/11012/213717
dc.language.isoencs
dc.publisherWiley-VCH GmbHcs
dc.relation.ispartofAdvanced Electronic Materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/aelm.202200980cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2199-160X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbioelectronicsen
dc.subjection-beam sputteringen
dc.subjectmultielectrode arraysen
dc.subjecttitanium nitrideen
dc.titleHigh-Conductivity Stoichiometric Titanium Nitride for Bioelectronicsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-182433en
sync.item.dbtypeVAVen
sync.item.insts2023.08.04 17:01:05en
sync.item.modts2023.08.04 16:16:17en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. oddělení-MEL-SIXcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023Gablech.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format
Description:
2023Gablech.pdf