Vybrané transformace náhodných veličin užívané v klasické lineární regresi
but.committee | prof. RNDr. Jan Chvalina, DrSc. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. RNDr. Libor Žák, Ph.D. (člen) doc. RNDr. Libor Čermák, CSc. (člen) doc. Ing. Luděk Nechvátal, Ph.D. (člen) prof. Bruno Rubino, University of L'Aquila (člen) | cs |
but.defence | Student přednesl obhajobu DP (v angličtině). Zodpověděl otázky oponenta. | cs |
but.jazyk | angličtina (English) | |
but.program | Aplikované vědy v inženýrství | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Hübnerová, Zuzana | en |
dc.contributor.author | Tejkal, Martin | en |
dc.contributor.referee | Michálek, Jaroslav | en |
dc.date.created | 2017 | cs |
dc.description.abstract | Klasická lineární regrese a z ní odvozené testy hypotéz jsou založeny na předpokladu normálního rozdělení a shodnosti rozptylu závislých proměnných. V případě že jsou předpoklady normality porušeny, obvykle se užívá transformací závisle proměnných. První část této práce se zabývá transformacemi stabilizujícími rozptyl. Značná pozornost je udělena náhodným veličinám s Poissonovým a negativně binomickým rozdělením, pro které jsou studovány zobecněné transformace stabilizující rozptyl obsahující parametry v argumentu navíc. Pro tyto parametry jsou stanoveny jejich optimální hodnoty. Cílem druhé části práce je provést srovnání transformací uvedených v první části a dalších často užívaných transformací. Srovnání je provedeno v rámci analýzy rozptylu testováním hypotézy shodnosti středních hodnot p nezávislých náhodných výběrů s pomocí F testu. V této části jsou nejprve studovány vlastnosti F testu za předpokladu shodných a neshodných rozptylů napříč výběry. Následně je provedeno srovnání silofunkcí F testu aplikovaného pro p výběrů z Poissonova rozdělení transformovanými odmocninovou, logaritmickou a Yeo Johnsnovou transformací a z negativně binomického rozdělení transformovaného argumentem hyperbolického sinu, logaritmickou a Yeo-Johnsnovou transformací. | en |
dc.description.abstract | Classical linear regression model and the respective tests are based on an assumption of normally distributed response variables and on an assumption of variance equality. If the normality assumption is not fulfilled, then the response variables are usually transformed. In the first part of this work variance stabilising transformations are discussed. Great deal of attention is given to random variables of Poisson and negative binomial distribution, for which generalised variance stabilising transformations with addition constants in their arguments are studied. Optimal values of the constants for the generalised transformations are determined. The second part aims to provide a comparison of the transformations introduced in the first part and some other commonly used transformations. The comparison is done within the ANOVA framework by testing the hypothesis of equality of expectations among p random samples via F test. The properties of the distribution of the F test under the assumptions of equal and unequal variances are studied. Finally a comparison of the power functions of the F test applied to p random samples from Poisson distribution transformed via square root, logarithmic and Yeo-Johnson transformation, and to p random sample of negative binomial distribution transformed via argument of hyperbolic sine, logarithmic and the Yeo-Johnson transformation is carried out theoretically and by simulations. | cs |
dc.description.mark | A | cs |
dc.identifier.citation | TEJKAL, M. Vybrané transformace náhodných veličin užívané v klasické lineární regresi [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2017. | cs |
dc.identifier.other | 96928 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/66650 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | Poissonovo rozdělení | en |
dc.subject | negativně binomické rozdělení | en |
dc.subject | transformace stabilizující rozptyl | en |
dc.subject | odmocninová transformace | en |
dc.subject | transformace argument hyperbolického sinu | en |
dc.subject | logaritmická transformace | en |
dc.subject | Yeo-Johnsnova transformace | en |
dc.subject | Lineární regrese | en |
dc.subject | ANOVA | en |
dc.subject | F-test | en |
dc.subject | silofunkce | en |
dc.subject | Poisson distribution | cs |
dc.subject | negative binomial distribution | cs |
dc.subject | variance stabilising transformation | cs |
dc.subject | logarithmic transformation | cs |
dc.subject | square root transformation | cs |
dc.subject | argument of hyperbolic sine transformation | cs |
dc.subject | Yeo-Johnson transformation | cs |
dc.subject | Linear regression | cs |
dc.subject | ANOVA | cs |
dc.subject | F-test | cs |
dc.subject | power function | cs |
dc.title | Vybrané transformace náhodných veličin užívané v klasické lineární regresi | en |
dc.title.alternative | Selected random variables transformations used in classical linear regression | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2017-06-15 | cs |
dcterms.modified | 2017-06-16-09:38:15 | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
sync.item.dbid | 96928 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.27 08:37:32 | en |
sync.item.modts | 2025.01.15 22:06:53 | en |
thesis.discipline | Matematické inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 1.25 MB
- Format:
- Adobe Portable Document Format
- Description:
- final-thesis.pdf
Loading...
- Name:
- review_96928.html
- Size:
- 10.22 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_96928.html