Analýza entit v psychoterapeutických sezeních

Loading...
Thumbnail Image

Date

Authors

Polok, Alexander

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce se zabývá analýzou psychoterapeutických sezení v rámci výzkumného projektu DeePsy. Jejím cílem je navrhnout a vytvořit sadu příznaků modelujících průběh sezení, jež mohou odhalit na první pohled nepatrné nuance. Zmíněné příznaky jsou automaticky extrahovány ze zdrojové nahrávky s využitím hlubokých neuronových sítí. Příznaky jsou zpracovány, porovnány napříč sezeními a graficky zobrazeny, čímž vzniká dokument plnící roli zpětné vazby o sezení pro terapeuta. Tato zpětná vazba může posloužit k profesnímu růstu a kvalitnější psychoterapii v budoucnu. Bylo dosaženo relativního zlepšení detekce řečové aktivity o 37,82 %. Byl zobecněn diarizační systém VBx ke konvergenci ke dvěma mluvčím s minimálním relativním zhoršením chybovosti o 0,66 %. Byl natrénován systém pro automatické rozpoznávání řeči, jehož chybovost je o 17,06 % relativně lepší než nejlepší dostupný hybridní model. Dále byly natrénovány systémy pro klasifikaci sentimentu, typu terapeutických intervencí a detekci překrývající se řeči.
This work focuses on analyzing psychotherapy sessions within the DeePsy research project. This work aims to design and develop features that model the session dynamics, which can reveal seemingly subtle nuances. The mentioned features are automatically extracted from the source recording using neural networks. They are further processed, compared across sessions, and displayed graphically, creating a document that acts as a feedback document about the session for the therapist. Furthermore, this assistive tool can help therapists to professionally grow and to provide better psychotherapy in the future. A relative improvement in voice activity detection of 37.82% was achieved. The VBx diarization system was generalized to converge to two speakers with a minimum relative error rate degradation of 0.66%. An automatic speech recognition system has been trained with a 17.06% relative improvement over the best available hybrid model. Models for sentiment classification, type of therapeutic interventions, and overlapping speech detection were also trained.

Description

Citation

POLOK, A. Analýza entit v psychoterapeutických sezeních [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Strojové učení

Comittee

doc. Ing. Lukáš Burget, Ph.D. (předseda) doc. Ing. Martin Čadík, Ph.D. (člen) doc. Ing. Vladimír Janoušek, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) Ing. Jaroslav Rozman, Ph.D. (člen) Ing. Tomáš Milet, Ph.D. (člen)

Date of acceptance

2023-06-16

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO