2.7 mu m quantum cascade detector: Above band gap energy intersubband detection

Loading...
Thumbnail Image

Authors

Giparakis, Miriam
Knotig, Hedwig
Detz, Hermann
Beiser, Maximilian
Schrenk, Werner
Schwarz, Benedikt
Strasser, Gottfried
Andrews, Aaron Maxwell

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing
Altmetrics

Abstract

Quantum cascade detectors (QCDs) are mid-infrared and far-infrared, low-noise, photovoltaic detectors utilizing intersubband transitions. This Letter presents an InAs/AlAs0.16Sb0.84 based QCD lattice matched to an InAs substrate. This material system exhibits properties like a low effective electron mass of the well material of 0.023 m(0), beneficial for higher optical absorption strength, and a high conduction band offset of 2.1 eV, allowing the design of QCDs in the mid-infrared and near-infrared region. The presented QCD has a peak spectral response at 2.7 mu m (0.459 eV), the center of a CO2 absorption band. To enable top side illumination, a grating was implemented. This additionally bypasses absorption by the narrow bandgap 0.345 eV (3.54 mu m) InAs substrate material. The QCD has a peak responsivity at a room temperature of 5.63 mA/W and a peak specific detectivity of 1.14 x 10(8) Jones. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Quantum cascade detectors (QCDs) are mid-infrared and far-infrared, low-noise, photovoltaic detectors utilizing intersubband transitions. This Letter presents an InAs/AlAs0.16Sb0.84 based QCD lattice matched to an InAs substrate. This material system exhibits properties like a low effective electron mass of the well material of 0.023 m(0), beneficial for higher optical absorption strength, and a high conduction band offset of 2.1 eV, allowing the design of QCDs in the mid-infrared and near-infrared region. The presented QCD has a peak spectral response at 2.7 mu m (0.459 eV), the center of a CO2 absorption band. To enable top side illumination, a grating was implemented. This additionally bypasses absorption by the narrow bandgap 0.345 eV (3.54 mu m) InAs substrate material. The QCD has a peak responsivity at a room temperature of 5.63 mA/W and a peak specific detectivity of 1.14 x 10(8) Jones. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Description

Citation

APPLIED PHYSICS LETTERS. 2022, vol. 120, issue 7, p. 1-4.
https://aip.scitation.org/doi/10.1063/5.0076856

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO