Epitaxní materiály a nanostruktury
Browse
Recent Submissions
Now showing 1 - 5 of 13
- ItemDeep learning control of THz QCLs(Optica Publishing Group, 2021-07-19) Limbacher, Benedikt; Schönhuber, Sebastian; Kainz, Martin A.; Bachelard, Nicolas; Andrews, Aaron Maxwell; Detz, Hermann; Strasser, Gottfried; Darmo, Juraj; Unterrainer, KarlArtificial neural networks are capable of fitting highly non-linear and complex systems. Such complicated systems can be found everywhere in nature, including the non-linear interaction between optical modes in laser resonators. In this work, we demonstrate artificial neural networks trained to model these complex interactions in the cavity of a Quantum Cascade Random Laser. The neural networks are able to predict modulation schemes for desired laser spectra in real-time. This radically novel approach makes it possible to adapt spectra to individual requirements without the need for lengthy and costly simulation and fabrication iterations. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
- Itemd-Glucose Adsorption on the TiO2 Anatase (100) Surface: A Direct Comparison Between Cluster-Based and Periodic Approaches(Frontiers, 2021-08-31) Butera, Valeria; Massaro, Arianna; Muoz-García, Ana B.; Pavone, Michele; Detz, HermannTitanium dioxide (TiO2) has been extensively studied as a suitable material for a wide range of fields including catalysis and sensing. For example, TiO2-based nanoparticles are active in the catalytic conversion of glucose into value-added chemicals, while the good biocompatibility of titania allows for its application in innovative biosensing devices for glucose detection. A key process for efficient and selective biosensors and catalysts is the interaction and binding mode between the analyte and the sensor/catalyst surface. The relevant features regard both the molecular recognition event and its effects on the nanoparticle electronic structure. In this work, we address both these features by combining two first-principles methods based on periodic boundary conditions and cluster approaches (CAs). While the former allows for the investigation of extended materials and surfaces, CAs focus only on a local region of the surface but allow for using hybrid functionals with low computational cost, leading to a highly accurate description of electronic properties. Moreover, the CA is suitable for the study of reaction mechanisms and charged systems, which can be cumbersome with PBC. Here, a direct and detailed comparison of the two computational methodologies is applied for the investigation of d-glucose on the TiO2 (100) anatase surface. As an alternative to the commonly used PBC calculations, the CA is successfully exploited to characterize the formation of surface and subsurface oxygen vacancies and to determine their decisive role in d-glucose adsorption. The results of such direct comparison allow for the selection of an efficient, finite-size structural model that is suitable for future investigations of biosensor electrocatalytic processes and biomass conversion catalysis.
- ItemPhotochemical CO2 conversion on pristine and Mg-doped gallium nitride (GaN): a comprehensive DFT study based on a cluster model approach(Royal Society of Chemistry, 2021-11-23) Butera, Valeria; Detz, HermannThe photochemical reduction of carbon dioxide (CO2) into methanol is very appealing since it requires sunlight as the only energy input. However, the development of highly selective and efficient photocatalysts is still very challenging. It has been reported that CO2 can be spontaneously activated on gallium nitride (GaN). Moreover, the photocatalytic activity for CO2 conversion into methanol can be drastically enhanced by incorporating a small amount of Mg dopant. In this work, density functional theory (DFT) based on a cluster model approach has been applied to further explore the photocatalytic activity of bare GaN towards CO2 adsorption and conversion. We extended the investigation of Mg-doping replacing one Ga atom with Mg on three different sites and evaluated the consequent effects on the band gaps and CO2 adsorption energies. Finally, we explore different routes leading to the production of methanol and evaluate the catalytic activity of bare GaN by applying the energetic span model (ESM) in order to identify the rate-determining states which are fundamental for suggesting modifications that can improve the photocatalytic activity of this promising material.
- ItemSurface Protection and Activation of Mid-IR Plasmonic Waveguides for Spectroscopy of Liquids(IEEE, 2024-01-15) David, Mauro; Doganlar, Ismael C.; Nazzari, Daniele; Arigliani, Elena; Wacht, Dominik; Sistani, Masiar; Detz, Hermann; Ramer, Georg; Lendl, Bernhard; Weber, Walter M.; Strasser, Gottfried; Hinkov, BorislavLiquid spectroscopy in the mid-infrared spectral range is a very powerful, yet premature technique for selective and sensitive molecule detection. Due to the lack of suitable concepts and materials for versatile miniaturized sensors, it is often still limited to bulky systems and offline analytics. Mid-infrared plasmonics is a promising field of current research for such compact and surface-sensitive structures, enabling new pathways for much-needed photonic integrated sensors. In this work, we focus on extending the concept of Ge/Au-based mid-infrared plasmonic waveguides to enable broadband liquid detection. Through the implementation of high-quality dielectric passivation layers deposited by atomic layer deposition (ALD), we cover the weak and water-soluble Ge native oxide. We show that approximately 10 nm of e.g. Al2O3 or ZrO2 can already protect the plasmonic waveguides for up to 90 min of direct water exposure. This unlocks integrated sensing schemes for broadband molecule detection based on mid-infrared plasmonics. In a proof-of-concept experiment, we further demonstrate that the ZrO(2 )coated waveguides can be activated by surface functionalization, allowing the direct measurement of diethyl ether at a wavelength of 9.38 mu m.
- ItemCyclic Carbonate Formation from Epoxides and CO2 Catalyzed by Sustainable Alkali Halide-Glycol Complexes: A DFT Study to Elucidate Reaction Mechanism and Catalytic Activity(AMER CHEMICAL SOC, 2020-07-28) Butera, Valeria; Detz, HermannWe provide a comprehensive DFT investigation of the mechanistic details of CO2 fixation into styrene oxide to form styrene carbonate, catalyzed by potassium iodide-tetraethylene glycol complex. A detailed view on the intermediate steps of the overall reaction clarifies the role of hydroxyl substances as co-catalysts for the alkali halide-catalyzed cycloaddition. The increase of iodide nucleophilicity in presence of tetraethylene glycol is examined and rationalized by NBO and Hirshfeld charge analysis, and bond distances. We explore how different alkali metal salts and glycols affect the catalytic performance. Our results provide important hints on the synthesis of cyclic carbonates from CO2 and epoxides promoted by alkali halides and glycol complexes, allowing the development of more efficient catalysts.
- «
- 1 (current)
- 2
- 3
- »