Určení obsazenosti parkoviště z obrazu

but.committeedoc. Ing. Martin Čadík, Ph.D. (předseda) doc. Ing. Jiří Jaroš, Ph.D. (místopředseda) Ing. David Bařina, Ph.D. (člen) doc. Ing. Radek Burget, Ph.D. (člen) doc. RNDr. Milan Češka, Ph.D. (člen)cs
but.defenceStudent nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Jak je rychlé vaše řešení a kolik výpočetních prostředků využívá? Vyhodnoťte prosím pro zpracování celého vstupního obrázku včetně odhadu celkového počtu vozidel (celou pipeline). Jak vaše řešení obstojí v případě standardních datasetu pro odhad počtu vozidel (některý z TRANCOS, PUCPR+, CARPK)? Předpokládejme uživatelem definované zóny v ideálním rozložení.cs
but.jazykčeština (Czech)
but.programInformační technologiecs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorHerout, Adamcs
dc.contributor.authorDubovec, Pavolcs
dc.contributor.refereeŠpaňhel, Jakubcs
dc.date.created2021cs
dc.description.abstractPri zisťovaní počtu vozidiel na obrázkoch parkovísk, ktoré nemajú vhodné parametre potrebné na spracovanie, môže byť problém spočítania vozidiel dosť komplexným. Cieľom tejto práce je vytvoriť aplikáciu, ktorá zistí počet vozidiel na zvolenej fotografii, bez ohľadu na to aký pohľad na parkovisko bol zvolený. Takéto zisťovanie bude prebiehať pomocou strojového učenia, na základe modelu, vytvoreného trénovaním na trénovacích dátach, ktoré pozostávajú z fotografii parkovísk z rôznych pohľadov a pozícií. Problém bol riešený nekonvenčným spôsobom, a to tak, že sa obrázky s parkoviskom rozdelia na niekoľko záujmových oblastí (zón) a z týchto oblastí sa vytvoria výrezy, pomocou vytvorenej aplikácie špecializovanej na túto úlohu. Následne prebehne anotácia obrázkov vytvorených týmto spôsobom, pomocou vytvorenej hodnotiacej aplikácie. Obrázky sa následne naformátujú na rovnakú veľkosť. Tieto pripravené výrezy sú následne predané API Keras, pomocou ktorého prebieha trénovanie modelu. Cieľom bolo vytvoriť model, ktorý by bol dostatočne univerzálny natoľko, aby vedel určiť počet vozidiel na fotografii v akomkoľvek prostredí (čas, počasie, poveternostné podmienky) a v čo najkratšom čase. V súčasnosti model dokáže predikovať správny počet vozidiel na výrezu na testovacích dátach s presnosťou 87% a s pripustením chyby prvého rádu na 95%. Táto práca sa cielene zameriava na riešenie tohto problému v reálnom čase. Jedná sa klasifikáciu do 7 tried (0-6 vozidiel). Toto riešenie by mohlo byť zaujímavé hlavne pre statické kamery na netypických miestach (napr. bočný pohľad), prípadne je pre ne dôležité snímanie určitých oblastí.cs
dc.description.abstractWhen determining the number of vehicles in the pictures of carparks that do not have the appropriate parameters needed for processing, the problem of vehicle counting can be quite complex. The aim of this work is to create an application that detects the number of vehicles in the selected photo, regardless of selected carpark view. This detection will be performed using machine learning, based on a model, created by training on trained data, which consists of photographs of parking lots from different perspectives and positions. The problem was solved in an unconventional way, by splitting the pictures with the parking lot into several areas of interest (zones) and creating anotations from these areas, using the created application specialized for this task. The images are then formatted to the same size. These prepared cutouts are then loaded to the Keras API, which is used to train the model. The aim was to create a model that would be versatile enough to determine the number of vehicles in a photograph in any environment (time, weather, weather conditions) and in the shortest possible time. Currently, the model can predict the correct number of vehicles in the cutout on test data with an accuracy of 87% and with a first order error of 95%. This work focuses on solving this problem in real time. It is a classification into 7 classes (0-6 vehicles). This solution could be interesting especially for static cameras in atypical places (eg side view), or it is important for them to capture certain areas.en
dc.description.markBcs
dc.identifier.citationDUBOVEC, P. Určení obsazenosti parkoviště z obrazu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2021.cs
dc.identifier.other136562cs
dc.identifier.urihttp://hdl.handle.net/11012/199406
dc.language.isocscs
dc.publisherVysoké učení technické v Brně. Fakulta informačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectPočítanie objektovcs
dc.subjectPočítanie vozidielcs
dc.subjectTvorba aplikáciícs
dc.subjectDeep Learningcs
dc.subjectObject countingen
dc.subjectVehicle countingen
dc.subjectApplication developmenten
dc.subjectDeep Learningen
dc.titleUrčení obsazenosti parkoviště z obrazucs
dc.title.alternativeOccupancy Estimation of a Parking Lot from Imagesen
dc.typeTextcs
dc.type.driverbachelorThesisen
dc.type.evskpbakalářská prácecs
dcterms.dateAccepted2021-06-14cs
dcterms.modified2021-06-19-12:15:44cs
eprints.affiliatedInstitution.facultyFakulta informačních technologiícs
sync.item.dbid136562en
sync.item.dbtypeZPen
sync.item.insts2025.03.18 19:36:33en
sync.item.modts2025.01.17 13:01:43en
thesis.disciplineInformační technologiecs
thesis.grantorVysoké učení technické v Brně. Fakulta informačních technologií. Ústav počítačové grafiky a multimédiícs
thesis.levelBakalářskýcs
thesis.nameBc.cs
Files
Original bundle
Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
Posudek-Vedouci prace-24012_v.pdf
Size:
85.51 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Vedouci prace-24012_v.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-24012_o.pdf
Size:
96.43 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Oponent prace-24012_o.pdf
Loading...
Thumbnail Image
Name:
review_136562.html
Size:
1.43 KB
Format:
Hypertext Markup Language
Description:
file review_136562.html
Collections