Organic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approach
dc.contributor.author | Kochergin, Yaroslav S. | cs |
dc.contributor.author | Mohsen Beladi, Mousavi | cs |
dc.contributor.author | Khezri, Bahareh | cs |
dc.contributor.author | Lyu, Pengbo | cs |
dc.contributor.author | Bojdys, Michael J. | cs |
dc.contributor.author | Pumera, Martin | cs |
dc.coverage.issue | 11 | cs |
dc.coverage.volume | 9 | cs |
dc.date.issued | 2021-03-21 | cs |
dc.description.abstract | Conventional photoelectrocatalysts composed of precious metals and inorganic elements have limited synthetic design, hence, hampered modularity of their photophysical properties. Here, we demonstrate a scalable, one-pot synthetic approach to grow organic polymer films on the surface of the conventional copper plate under mild conditions. Molecular precursors, containing electron-rich thiophene and electron-deficient triazine-rings, were combined into a donor-acceptor pi-conjugated polymer with a broad visible light adsorption range due to a narrow bandgap of 1.42 eV. The strong charge push-pull effect enabled the fabricated donor-acceptor material to have a marked activity as an electrode in a photoelectrochemical cell, reaching anodic photocurrent density of 6.8 mu A cm(-2) (at 0.6 V vs. Ag/AgCl, pH 7). This value is 3 times higher than that of the model donor-donor thiophene-only-based polymer and twice as high as that of the analogue synthesized in bulk using the heterogenous CuCl catalyst. In addition, the fabricated photoanode showed a 2-fold increase in the photoelectrocatalytic oxygen evolution from water upon simulated sunlight irradiation with the photocurrent density up to 4.8 mA cm(-2) (at 1.0 V vs. Ag/AgCl, pH 14). The proposed engineering strategy opens new pathways toward the fabrication of efficient organic "green" materials for photoelectrocatalytic solar energy conversion. | en |
dc.format | text | cs |
dc.format.extent | 7162-7171 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Materials Chemistry A. 2021, vol. 9, issue 11, p. 7162-7171. | en |
dc.identifier.doi | 10.1039/d0ta11820f | cs |
dc.identifier.issn | 2050-7488 | cs |
dc.identifier.orcid | 0000-0001-5846-2951 | cs |
dc.identifier.other | 171769 | cs |
dc.identifier.researcherid | F-2724-2010 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/200988 | |
dc.language.iso | en | cs |
dc.publisher | Royal Society of Chemistry | cs |
dc.relation.ispartof | Journal of Materials Chemistry A | cs |
dc.relation.uri | https://pubs.rsc.org/en/content/articlelanding/2021/TA/D0TA11820F#!divAbstract | cs |
dc.rights | Creative Commons Attribution 3.0 Unported | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2050-7488/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | cs |
dc.subject | photoelectrode engineering | en |
dc.title | Organic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approach | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-171769 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:50:30 | en |
sync.item.modts | 2025.01.17 19:34:24 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovace | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- d0ta11820f.pdf
- Size:
- 799.3 KB
- Format:
- Adobe Portable Document Format
- Description:
- d0ta11820f.pdf