Bayesian Inference of Total Least-Squares With Known Precision
dc.contributor.author | Friml, Dominik | cs |
dc.contributor.author | Václavek, Pavel | cs |
dc.date.issued | 2022-09-06 | cs |
dc.description.abstract | This paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables. | en |
dc.format | text | cs |
dc.format.extent | 1-6 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Proceedings of the IEEE Conference on Decision and Control. 2022, p. 1-6. | en |
dc.identifier.doi | 10.1109/CDC51059.2022.9992409 | cs |
dc.identifier.isbn | 978-1-66-546761-2 | cs |
dc.identifier.orcid | 0000-0002-2013-6912 | cs |
dc.identifier.orcid | 0000-0001-8624-5874 | cs |
dc.identifier.other | 180119 | cs |
dc.identifier.researcherid | CRJ-4028-2022 | cs |
dc.identifier.researcherid | A-3448-2009 | cs |
dc.identifier.scopus | 57328576200 | cs |
dc.identifier.scopus | 8448897700 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/209144 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | Proceedings of the IEEE Conference on Decision and Control | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/9992409 | cs |
dc.rights | (C) IEEE | cs |
dc.rights.access | openAccess | cs |
dc.subject | Bayesian networks | en |
dc.subject | Gaussian noise (electronic) | en |
dc.subject | Inference engines | en |
dc.subject | Least squares approximations | en |
dc.subject | Permanent magnets | en |
dc.title | Bayesian Inference of Total Least-Squares With Known Precision | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-180119 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:32 | en |
sync.item.modts | 2025.01.17 18:43:56 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 9992409_accepted.pdf
- Size:
- 355.54 KB
- Format:
- Adobe Portable Document Format
- Description:
- 9992409_accepted.pdf