Bayesian Inference of Total Least-Squares With Known Precision

dc.contributor.authorFriml, Dominikcs
dc.contributor.authorVáclavek, Pavelcs
dc.date.issued2022-09-06cs
dc.description.abstractThis paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables.en
dc.description.abstractThis paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables.en
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProceedings of the IEEE Conference on Decision and Control. 2022, p. 1-6.en
dc.identifier.doi10.1109/CDC51059.2022.9992409cs
dc.identifier.isbn978-1-66-546761-2cs
dc.identifier.orcid0000-0002-2013-6912cs
dc.identifier.orcid0000-0001-8624-5874cs
dc.identifier.other180119cs
dc.identifier.researcheridCRJ-4028-2022cs
dc.identifier.researcheridA-3448-2009cs
dc.identifier.scopus57328576200cs
dc.identifier.scopus8448897700cs
dc.identifier.urihttp://hdl.handle.net/11012/209144
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofProceedings of the IEEE Conference on Decision and Controlcs
dc.relation.urihttps://ieeexplore.ieee.org/document/9992409cs
dc.rights(C) IEEEcs
dc.rights.accessopenAccesscs
dc.subjectBayesian networksen
dc.subjectGaussian noise (electronic)en
dc.subjectInference enginesen
dc.subjectLeast squares approximationsen
dc.subjectPermanent magnetsen
dc.subjectBayesian networks
dc.subjectGaussian noise (electronic)
dc.subjectInference engines
dc.subjectLeast squares approximations
dc.subjectPermanent magnets
dc.titleBayesian Inference of Total Least-Squares With Known Precisionen
dc.title.alternativeBayesian Inference of Total Least-Squares With Known Precisionen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-180119en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:08:41en
sync.item.modts2025.10.14 10:42:37en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí technikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9992409_accepted.pdf
Size:
355.54 KB
Format:
Adobe Portable Document Format
Description:
9992409_accepted.pdf