Design of tailored biodegradable implants: The effect of voltageon electrodeposited calcium phosphate Coatings on puremagnesium

Loading...
Thumbnail Image

Authors

Horynová, Miroslava
Remešová, Michaela
Klakurková, Lenka
Dvořák, Karel
Ročňáková, Ivana
Yan, Shaokun
Čelko, Ladislav
Song, Guang-Ling

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

The American Ceramic Society
Altmetrics

Abstract

Magnesium, as a biodegradable metal, offers great potential for use as a tempo-rary implant material, which dissolves in the course of bone tissue healing. It cansufficiently support the bone and promote the bone healing process. However, thecorrosion resistance of magnesium implants must be enhanced before its applica-tion in clinical practice. A promising approach of enhancing the corrosion resis-tance is deposition of bioactive coating, which can reduce the corrosion rate ofthe implants and promote bone healing. Therefore, a welldesigned substratecoat-ing system allowing a good control of the degradation behavior is highly desir -able for tailored implants for specific groups of patients with particular needs. Inthis con tribution, the influence of coating formation conditions on the charact eris-tics of potentiostatically elect rodeposited CaP coatings on magnesium substratewas evaluated. Results showed that potential variation led to formation of coat-ings with the same chemical composition, but very different morphologies.Parameters that mostly influence the coating performance, such as the thickness,uniformity, deposits size, and orientation, varied from produced coating to coat-ing. These characteristics of CaP coatings on magnesium were controlled by coat-ing formation potential, and it was demonstrated that the electrodeposition couldbe a promising coating technique for production of tailored magnesium CaPimplants.
Magnesium, as a biodegradable metal, offers great potential for use as a tempo-rary implant material, which dissolves in the course of bone tissue healing. It cansufficiently support the bone and promote the bone healing process. However, thecorrosion resistance of magnesium implants must be enhanced before its applica-tion in clinical practice. A promising approach of enhancing the corrosion resis-tance is deposition of bioactive coating, which can reduce the corrosion rate ofthe implants and promote bone healing. Therefore, a welldesigned substratecoat-ing system allowing a good control of the degradation behavior is highly desir -able for tailored implants for specific groups of patients with particular needs. Inthis con tribution, the influence of coating formation conditions on the charact eris-tics of potentiostatically elect rodeposited CaP coatings on magnesium substratewas evaluated. Results showed that potential variation led to formation of coat-ings with the same chemical composition, but very different morphologies.Parameters that mostly influence the coating performance, such as the thickness,uniformity, deposits size, and orientation, varied from produced coating to coat-ing. These characteristics of CaP coatings on magnesium were controlled by coat-ing formation potential, and it was demonstrated that the electrodeposition couldbe a promising coating technique for production of tailored magnesium CaPimplants.

Description

Citation

JOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2019, vol. 102, issue 1, p. 123-135.
https://onlinelibrary.wiley.com/doi/abs/10.1111/jace.15888

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO