Monolithic frequency comb platform based on interband cascade lasers and detectors

Loading...
Thumbnail Image

Authors

Schwarz, Benedikt
Hillbrand, Johannes David
Beiser, Maximilian
Andrews, Aaron Maxwell
Strasser, Gottfried
Detz, Hermann
Schade, Anne
Weih, Robert
Höfling, Sven

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

The Optical Society
Altmetrics

Abstract

New insights into the laser dynamics of interband cascade lasers reveal the possibility to generate frequency-modulated combs by utilizing their inherent gain nonlinearity. The resulting comb state is characterized by chirped instantaneous frequency, which appears to be universal to frequency combs based on gain-induced four-wave mixing. The fast dynamics in the injectors further allow the realization of exceptionally sensitive and high-speed photodetectors, operating at room temperature, using the very same epilayer structure. With the capability of integrating frequency combs and ultra-fast detectors on a single chip consuming less than a watt of electric power, interband cascade laser technology provides a complete and unmatched platform for future monolithic and battery-driven dual-comb spectrometers.
New insights into the laser dynamics of interband cascade lasers reveal the possibility to generate frequency-modulated combs by utilizing their inherent gain nonlinearity. The resulting comb state is characterized by chirped instantaneous frequency, which appears to be universal to frequency combs based on gain-induced four-wave mixing. The fast dynamics in the injectors further allow the realization of exceptionally sensitive and high-speed photodetectors, operating at room temperature, using the very same epilayer structure. With the capability of integrating frequency combs and ultra-fast detectors on a single chip consuming less than a watt of electric power, interband cascade laser technology provides a complete and unmatched platform for future monolithic and battery-driven dual-comb spectrometers.

Description

Citation

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO