CNN Architecture for Posture Classification on Small Data
dc.contributor.author | Mesárošová, Michaela | cs |
dc.contributor.author | Mihálik, Ondrej | cs |
dc.contributor.author | Jirgl, Miroslav | cs |
dc.coverage.issue | 9 | cs |
dc.coverage.volume | 58 | cs |
dc.date.issued | 2024-08-14 | cs |
dc.description.abstract | A convolutional neural network is often mentioned as one of the deep learning methods that requires a large amount of training data. Questioning this belief, this paper explores the applicability of classification based on a shallow net structure trained on a small data set in the~context of patient posture classification based on data from a pressure mattress. Designing a CNN often presents a complex problem, especially without a universally applicable approach, allowing many diverse structural possibilities and training settings. We tested various training options and layer configurations to provide an overview of influential parameters for posture classification. Experiments show encouraging results with the leave-one-out cross-validation accuracy of 93.1% of one of the evaluated CNN structures and its hyperparameter settings. | en |
dc.format | text | cs |
dc.format.extent | 299-304 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IFAC-PapersOnLine (ELSEVIER). 2024, vol. 58, issue 9, p. 299-304. | en |
dc.identifier.doi | 10.1016/j.ifacol.2024.07.413 | cs |
dc.identifier.issn | 2405-8963 | cs |
dc.identifier.orcid | 0009-0005-1276-8388 | cs |
dc.identifier.orcid | 0000-0001-7433-9275 | cs |
dc.identifier.orcid | 0000-0002-1037-0641 | cs |
dc.identifier.other | 189141 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/249472 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | IFAC-PapersOnLine (ELSEVIER) | cs |
dc.relation.uri | https://doi.org/10.1016/j.ifacol.2024.07.413 | cs |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2405-8963/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
dc.subject | CNN | en |
dc.subject | fine tuning | en |
dc.subject | network structure | en |
dc.subject | optimization | en |
dc.subject | posture classification | en |
dc.title | CNN Architecture for Posture Classification on Small Data | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-189141 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:36 | en |
sync.item.modts | 2025.01.17 15:29:28 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- CNN Architecture for Posture Classification on Small Data.pdf
- Size:
- 1.04 MB
- Format:
- Adobe Portable Document Format
- Description:
- file CNN Architecture for Posture Classification on Small Data.pdf