Novel Sparse Algorithms based on Lyapunov Stability for Adaptive System Identification
dc.contributor.author | Pogula, Rakesh | |
dc.contributor.author | Kumar, T. Kishore | |
dc.contributor.author | Albu, Felix | |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 27 | cs |
dc.date.accessioned | 2018-06-18T10:30:19Z | |
dc.date.available | 2018-06-18T10:30:19Z | |
dc.date.issued | 2018-04 | cs |
dc.description.abstract | Adaptive filters are extensively used in the identification of an unknown system. Unlike several gradient-search based adaptive filtering techniques, the Lyapunov Theory-based Adaptive Filter offers improved convergence and stability. When the system is described by a sparse model, the performance of Lyapunov Adaptive (LA) filter is degraded since it fails to exploit the system sparsity. In this paper, the Zero-Attracting Lyapunov Adaptation algorithm (ZA-LA), the Reweighted Zero-Attracting Lyapunov Adaptation algorithm (RZA-LA) and an affine combination scheme of the LA and proposed ZA-LA filters are proposed. The ZA-LA algorithm is based on ℓ1-norm relaxation while the RZA-LA algorithm uses a log-sum penalty to accelerate convergence when identifying sparse systems. It is shown by simulations that the proposed algorithms can achieve better convergence than the existing LMS/LA filter for a sparse system, while the affine combination scheme is robust in identifying systems with variable sparsity. | en |
dc.format | text | cs |
dc.format.extent | 270-280 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2018 vol. 27, č. 1, s. 270-280. ISSN 1210-2512 | cs |
dc.identifier.doi | 10.13164/re.2018.0270 | en |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | http://hdl.handle.net/11012/82984 | |
dc.language.iso | en | cs |
dc.publisher | Společnost pro radioelektronické inženýrství | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | https://www.radioeng.cz/fulltexts/2018/18_01_0270_0280.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Sparse system identification | en |
dc.subject | Lyapunov adaptive filter (LA) | en |
dc.subject | ℓ1-norm | en |
dc.subject | Zero-attracting LA | en |
dc.subject | Reweighted ZA-LA | en |
dc.subject | Affine combination | en |
dc.subject | Convergence | en |
dc.subject | Mean square deviation | en |
dc.subject | Mean square error | en |
dc.title | Novel Sparse Algorithms based on Lyapunov Stability for Adaptive System Identification | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta eletrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 18_01_0270_0280.pdf
- Size:
- 423.47 KB
- Format:
- Adobe Portable Document Format
- Description: