Nanoarchitectonics of Laser Induced MAX 3D-Printed Electrode for Photo-Electrocatalysis and Energy Storage Application with Long Cyclic Durability of 100 000 Cycles

dc.contributor.authorNouseen, Shaistacs
dc.contributor.authorDeshmukh, Sujitcs
dc.contributor.authorPumera, Martincs
dc.coverage.issue45cs
dc.coverage.volume34cs
dc.date.accessioned2025-04-04T11:56:50Z
dc.date.available2025-04-04T11:56:50Z
dc.date.issued2024-11-01cs
dc.description.abstract3D printing, a rapidly expanding domain of additive manufacturing, enables the fabrication of intricate 3D structures with adjustable fabrication parameters and scalability. Nonetheless, post-fabrication, 3D-printed materials often require an activation step to eliminate non-conductive polymers, a process traditionally achieved through chemical, thermal, or electrochemical methods. These conventional activation techniques, however, suffer from inefficiency and inconsistent results. In this study, a novel chemical-free activation method employing laser treatment is introduced. This innovative technique effectively activates 3D-printed electrodes, which are then evaluated for their photo and electrochemical performance against traditional solvent-activated counterparts. The method not only precisely ablates surplus non-conductive polymers but also exposes and activates the underlying electroactive materials. The 3D-printed electrodes, processed with this single-step laser approach, exhibit a notably low overpotential of approximate to 505 mV at a current density of -10 mA cm(-2) under an illumination wavelength of 365 nm. These electrodes also demonstrate exceptional durability, maintaining stability through >100 000 cycles in energy storage applications. By amalgamating 3D printing with laser processing, the creation of electrodes with complex structures and customizable properties is enabled. This synergy paves the way for streamlined production of such devices in the field of energy conversion and storage.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced functional materials. 2024, vol. 34, issue 45, p. 1-12.en
dc.identifier.doi10.1002/adfm.202407071cs
dc.identifier.issn1616-3028cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other190007cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/250791
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofAdvanced functional materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202407071cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1616-3028/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subject2D materialsen
dc.subject3D printingen
dc.subjectlaser activationen
dc.subjectMAX phaseen
dc.subjectsupercapacitoren
dc.titleNanoarchitectonics of Laser Induced MAX 3D-Printed Electrode for Photo-Electrocatalysis and Energy Storage Application with Long Cyclic Durability of 100 000 Cyclesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-190007en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 13:56:50en
sync.item.modts2025.04.04 13:32:05en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024Nouseen.pdf
Size:
5.64 MB
Format:
Adobe Portable Document Format
Description:
file 2024Nouseen.pdf