Multiphysics Model of an MR Damper including Magnetic Hysteresis

Loading...
Thumbnail Image

Authors

Kubík, Michal
Goldasz, Janusz

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi
Altmetrics

Abstract

Hysteresis is one of key factors influencing the output of magnetorheological (MR) actuators. The actuators reveal two primary sources of hysteresis. The hydro(mechanical) hysteresis can be related to flow dynamics mechanisms and is frequency- or rate-dependent. For comparison, the magnetic hysteresis is an inherent property of ferromagnetic materials forming the magnetic circuit of the actuators. The need for a good quality hysteresis model has been early recognized in studies on MR actuators; however, few studies have provided models which could be used in the design stage. In the paper we reveal a hybrid multiphysics model of a flow-mode MR actuator which could be used for that purpose. The model relies on the information which can be extracted primarily from material datasheets and engineering drawings. We reveal key details of the model and then verify it against measured data. Finally, we employ it in a parameter sensitivity study to examine the influence of magnetic hysteresis and other relevant factors on the output of the actuator.
Hysteresis is one of key factors influencing the output of magnetorheological (MR) actuators. The actuators reveal two primary sources of hysteresis. The hydro(mechanical) hysteresis can be related to flow dynamics mechanisms and is frequency- or rate-dependent. For comparison, the magnetic hysteresis is an inherent property of ferromagnetic materials forming the magnetic circuit of the actuators. The need for a good quality hysteresis model has been early recognized in studies on MR actuators; however, few studies have provided models which could be used in the design stage. In the paper we reveal a hybrid multiphysics model of a flow-mode MR actuator which could be used for that purpose. The model relies on the information which can be extracted primarily from material datasheets and engineering drawings. We reveal key details of the model and then verify it against measured data. Finally, we employ it in a parameter sensitivity study to examine the influence of magnetic hysteresis and other relevant factors on the output of the actuator.

Description

Citation

SHOCK AND VIBRATION. 2019, vol. 2019, issue 1, p. 1-20.
https://www.hindawi.com/journals/sv/2019/3246915/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO