0.3-V Nanopower Biopotential Low-Pass Filter

Loading...
Thumbnail Image

Authors

Kulej, Tomasz
Khateb, Fabian
Kumngern, Montree

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This paper presents a compact power-efficient CMOS fourth-order low-pass filter suitable for electrocardiogram (ECG) acquisition systems. The CMOS structure of the proposed filter utilize the bulkdriven technique and operates in subthreshold region to achieve extremely low-voltage supply (0.3V) and nanopower consumption (0.676 nW) for cut-off frequency of 100 Hz. The filter was designed and simulated using 0.18 mu m CMOS TSMC technology. The total input referred noise of the filter is 87 mu Vrms and the dynamic range is 58.1 dB. The filter offers the best figure of merit of 2.91 x 10(-14) J, the lowest power consumption and voltage supply, compared with the previous state-of-the-art nanowatt filter designs.
This paper presents a compact power-efficient CMOS fourth-order low-pass filter suitable for electrocardiogram (ECG) acquisition systems. The CMOS structure of the proposed filter utilize the bulkdriven technique and operates in subthreshold region to achieve extremely low-voltage supply (0.3V) and nanopower consumption (0.676 nW) for cut-off frequency of 100 Hz. The filter was designed and simulated using 0.18 mu m CMOS TSMC technology. The total input referred noise of the filter is 87 mu Vrms and the dynamic range is 58.1 dB. The filter offers the best figure of merit of 2.91 x 10(-14) J, the lowest power consumption and voltage supply, compared with the previous state-of-the-art nanowatt filter designs.

Description

Citation

IEEE Access. 2020, vol. 8, issue 1, IF: 3.745, p. 119586-119593.
https://ieeexplore.ieee.org/document/9127961

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO