Goertzel Algorithm Generalized to Non-integer Multiples of Fundamental Frequency

dc.contributor.authorSysel, Petrcs
dc.contributor.authorRajmic, Pavelcs
dc.coverage.issue1cs
dc.coverage.volume2012cs
dc.date.issued2012-03-22cs
dc.description.abstractThe paper deals with the Goertzel algorithm, used to establish the modulus and phase of harmonic components of a signal. The advantages of the Goertzel approach over the DFT and the FFT in cases of a few harmonics of interest are highlighted, with the paper providing deeper and more accurate analysis than can be found in the literature, including the memory complexity. But the main emphasis is placed on the generalization of the Goertzel algorithm, which allows us to use it also for frequencies which are not integer multiples of the fundamental frequency. Such an algorithm is derived at the cost of negligibly increasing the computational and memory complexity.en
dc.description.abstractThe paper deals with the Goertzel algorithm, used to establish the modulus and phase of harmonic components of a signal. The advantages of the Goertzel approach over the DFT and the FFT in cases of a few harmonics of interest are highlighted, with the paper providing deeper and more accurate analysis than can be found in the literature, including the memory complexity. But the main emphasis is placed on the generalization of the Goertzel algorithm, which allows us to use it also for frequencies which are not integer multiples of the fundamental frequency. Such an algorithm is derived at the cost of negligibly increasing the computational and memory complexity.en
dc.formattextcs
dc.format.extent1-20cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEURASIP Journal on Advances in Signal Processing. 2012, vol. 2012, issue 1, p. 1-20.en
dc.identifier.doi10.1186/1687-6180-2012-56cs
dc.identifier.issn1687-6172cs
dc.identifier.orcid0000-0003-1503-1320cs
dc.identifier.orcid0000-0002-8381-4442cs
dc.identifier.other89671cs
dc.identifier.researcheridMHQ-3209-2025cs
dc.identifier.researcheridA-3467-2013cs
dc.identifier.scopus59047110800cs
dc.identifier.scopus14024654600cs
dc.identifier.urihttp://hdl.handle.net/11012/137955
dc.language.isoencs
dc.publisherSpringerOpencs
dc.relation.ispartofEURASIP Journal on Advances in Signal Processingcs
dc.relation.urihttps://asp-eurasipjournals.springeropen.com/articles/10.1186/1687-6180-2012-56cs
dc.rightsCreative Commons Attribution 2.0 Genericcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1687-6172/cs
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/cs
dc.subjectGoertzel algorithmen
dc.subjectgeneralizationen
dc.subjectspectrumen
dc.subjectDFTen
dc.subjectDTFTen
dc.subjectDTMFen
dc.subjectGoertzel algorithm
dc.subjectgeneralization
dc.subjectspectrum
dc.subjectDFT
dc.subjectDTFT
dc.subjectDTMF
dc.titleGoertzel Algorithm Generalized to Non-integer Multiples of Fundamental Frequencyen
dc.title.alternativeGoertzel Algorithm Generalized to Non-integer Multiples of Fundamental Frequencyen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-89671en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:11:55en
sync.item.modts2025.10.14 10:08:54en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
16876180201256.pdf
Size:
459.78 KB
Format:
Adobe Portable Document Format
Description:
16876180201256.pdf