An Enhanced Noise Removal-based SAR Image Recognition Using DnCNN and Wavelet Transform
dc.contributor.author | Choi, Y. | |
dc.contributor.author | Kim, G. | |
dc.contributor.author | Kim, B. | |
dc.contributor.author | Kim, S. | |
dc.coverage.issue | 3 | cs |
dc.coverage.volume | 34 | cs |
dc.date.accessioned | 2025-07-24T12:38:40Z | |
dc.date.available | 2025-07-24T12:38:40Z | |
dc.date.issued | 2025-09 | cs |
dc.description.abstract | This paper presents an enhanced method for noise removal and target detection in Synthetic Aperture Radar (SAR) images using a Denoising Convolutional Neural Network (DnCNN) combined with wavelet trans¬form. Unlike conventional method, the proposed frame¬work focuses on remove the Speckle Noise through residu¬al learning and wavelet transform. The DnCNN architecture, consisting of 29 layers, efficiently removes noise while preserving high-frequency image features. The integration of wavelet transform further enhances noise removal and feature preservation. Experimental results demonstrate that the recognition rate of the proposed method improves by about 94% compared to original method under 10 dB Speckle Noise conditions. This method outperforms conventional algorithm in SAR image pro¬cessing, making it highly suitable for applications in noisy environments. | en |
dc.format | text | cs |
dc.format.extent | 429-437 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2025 vol. 34, č. 3, s. 429-437. ISSN 1210-2512 | cs |
dc.identifier.doi | 10.13164/re.2025.0429 | en |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | https://hdl.handle.net/11012/255213 | |
dc.language.iso | en | cs |
dc.publisher | Radioengineering Society | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | https://www.radioeng.cz/fulltexts/2025/25_03_0429_0437.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International license | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Navy SAR | en |
dc.subject | noise | en |
dc.subject | Convolutional Neural Network (CNN) | en |
dc.subject | Denoising Convolutional Neural Network (DnCNN) | en |
dc.subject | wavelet transform | en |
dc.title | An Enhanced Noise Removal-based SAR Image Recognition Using DnCNN and Wavelet Transform | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 25_03_0429_0437.pdf
- Size:
- 1.35 MB
- Format:
- Adobe Portable Document Format
- Description: