New voltage-mode universal filter and sinusoidal oscillator using only single DBTA

Loading...
Thumbnail Image

Authors

Herencsár, Norbert
Koton, Jaroslav
Vrba, Kamil
Lattenberg, Ivo

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Altmetrics

Abstract

In this article, a new voltage-mode second-order universal frequency filter and sinusoidal oscillator using only single differential-input buffered and transconductance amplifier (DBTA) is presented. The proposed voltage-mode filter structure using single DBTA and four passive elements can provide all standard filter functions, i.e. low-, band-, high-pass, band-stop, and all-pass without changing the circuit topology and enables independent control of the quality factor Q using single passive element. The circuit requires the minimal number of active and passive elements with no conditions for component matching. By slight modification of the proposed filter structure, the new DBTA-based sinusoidal oscillator is easily obtained. The oscillation condition and the oscillation frequency are independently adjustable by different virtually grounded passive elements. The proposed sinusoidal oscillator employs only grounded capacitors. The passive and active sensitivities of all the proposed circuit configurations are low. PSPICE simulations using a BJT realisation of DBTA and experimental results based on commercially available amplifiers OPA860 and MAX436 are included, which prove the workability of the proposed circuits.
In this article, a new voltage-mode second-order universal frequency filter and sinusoidal oscillator using only single differential-input buffered and transconductance amplifier (DBTA) is presented. The proposed voltage-mode filter structure using single DBTA and four passive elements can provide all standard filter functions, i.e. low-, band-, high-pass, band-stop, and all-pass without changing the circuit topology and enables independent control of the quality factor Q using single passive element. The circuit requires the minimal number of active and passive elements with no conditions for component matching. By slight modification of the proposed filter structure, the new DBTA-based sinusoidal oscillator is easily obtained. The oscillation condition and the oscillation frequency are independently adjustable by different virtually grounded passive elements. The proposed sinusoidal oscillator employs only grounded capacitors. The passive and active sensitivities of all the proposed circuit configurations are low. PSPICE simulations using a BJT realisation of DBTA and experimental results based on commercially available amplifiers OPA860 and MAX436 are included, which prove the workability of the proposed circuits.

Description

Citation

INTERNATIONAL JOURNAL OF ELECTRONICS. 2010, vol. 97, issue 4, p. 365-379.
http://www.tandfonline.com/doi/abs/10.1080/00207210903325229

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO