Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment

dc.contributor.authorPeng, Xiacs
dc.contributor.authorUrso, Mariocs
dc.contributor.authorKoláčková, Martinacs
dc.contributor.authorHúska, Daliborcs
dc.contributor.authorPumera, Martincs
dc.coverage.issue3cs
dc.coverage.volume34cs
dc.date.accessioned2024-05-10T13:45:40Z
dc.date.available2024-05-10T13:45:40Z
dc.date.issued2024-01-15cs
dc.description.abstractThe proliferation of micro/nanoplastics derived from the fragmentation of plastic waste released in the environment represents an increasingly alarming issue with adverse implications for aquatic ecosystems worldwide. Conventional approaches for mitigating such contamination are inadequate in removing plastic fragments with exceptionally tiny sizes. Therefore, it is highly urgent to develop efficient strategies to address the threats posed by micro/nanoplastics. Here, biohybrid microrobots, integrating the magnetic properties of Fe3O4 nanoparticles, are investigated for the dynamic removal of micro/nanoplastics from various aquatic environments via high-precision magnetic actuation and reliable electrostatic interactions. After the surface decoration with Fe3O4 nanoparticles, algae cells can achieve precise locomotion and wireless manipulation by regulating an external magnetic field. Taking advantage of this active movement, magnetic algae robots (MARs) display considerable capture and removal efficiencies for micro/nanoplastics in water with extensive application scenarios. The reusability of MARs is also investigated, proving great recyclable performance. The growth and cell viability experiments elucidate that the presence of Fe3O4 nanoparticles may result in hormesis stimulation of algae growth. Such recyclable microrobots with eco-friendly and low-cost characteristics offer an attractive strategy for sustainably tackling micro/nanoplastics pollution. Bioinspired magnetically powered microrobots, based on microalgae cells modified with magnetic nanoparticles, are introduced. Upon being decorated with Fe3O4 nanoparticles, microalgae cells can achieve precise movement and wireless manipulation by controlling an external magnetic field. Leveraging the active mobility, the magnetic algae-robots exhibit substantial efficiency in capturing and removing micro/nanoplastics, offering extensive applicability across various scenarios.imageen
dc.formattextcs
dc.format.extent11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationADVANCED FUNCTIONAL MATERIALS. 2024, vol. 34, issue 3, 11 p.en
dc.identifier.doi10.1002/adfm.202307477cs
dc.identifier.issn1616-301Xcs
dc.identifier.orcid0000-0001-7993-8138cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other187901cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/245486
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofADVANCED FUNCTIONAL MATERIALScs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202307477cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1616-301X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectenvironmenten
dc.subjectmicromotorsen
dc.subjectmicroplasticsen
dc.subjectnanorobotsen
dc.subjectwateren
dc.titleBiohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environmenten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-187901en
sync.item.dbtypeVAVen
sync.item.insts2024.05.10 15:45:40en
sync.item.modts2024.05.10 15:13:09en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AdvFunctMaterials2023Peng.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
file AdvFunctMaterials2023Peng.pdf