Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth
dc.contributor.author | Chen, Sitong | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.contributor.author | Tang, Xianhua | cs |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 306 | cs |
dc.date.accessioned | 2024-05-13T14:45:37Z | |
dc.date.available | 2024-05-13T14:45:37Z | |
dc.date.issued | 2024-02-16 | cs |
dc.description.abstract | The paper deals with the existence of normalized solutions for the following Schr & ouml;dinger-Poisson system with -constraint: { -Delta u+lambda u+mu(log||& lowast;u2)u=(e(u2-)1-u2)u,x is an element of R-2, integral R(2)u(2)dx=c, where mu>0,lambda is an element of R , will arise as a Lagrange multiplier and the nonlinearity enjoys critical exponential growth of Trudinger-Moser type. By specifying explicit conditions on the energy level c, we detect a geometry of local minimum and a minimax structure for the corresponding energy functional, and prove the existence of two solutions, one being a local minimizer and one of mountain-pass type. In particular, to catch a second solution of mountain-pass type, some sharp estimates of energy levels are proposed, suggesting a new threshold of compactness in the -constraint. Our study extends and complements the results of Cingolani-Jeanjean (SIAM J Math Anal 51(4): 3533-3568, 2019) dealing with the power nonlinearity a|u|p-2uin the case ofa>0andp>4, in the case of and , which seems to be the first contribution in the context of normalized solutions. Our model presents some new difficulties due to the intricate interplay between a logarithmic convolution potential and a nonlinear term of critical exponential type and requires a novel analysis and the implementation of new ideas, especially in the compactness argument. We believe that our approach will open the door to the study of other -constrained problems with critical exponential growth, and the new underlying ideas are of future development and applicability. | en |
dc.format | text | cs |
dc.format.extent | 1-32 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | MATHEMATISCHE ZEITSCHRIFT. 2024, vol. 306, issue 2, p. 1-32. | en |
dc.identifier.doi | 10.1007/s00209-024-03432-9 | cs |
dc.identifier.issn | 0025-5874 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 188260 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/245504 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | MATHEMATISCHE ZEITSCHRIFT | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s00209-024-03432-9 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0025-5874/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Critical exponential growth | en |
dc.subject | Logarithmic convolution potential | en |
dc.subject | Normalized solution | en |
dc.subject | Planar Schrödinger–Poisson system | en |
dc.subject | Trudinger–Moser inequality | en |
dc.title | Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-188260 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2024.05.13 16:45:37 | en |
sync.item.modts | 2024.05.13 16:13:33 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s00209024034329.pdf
- Size:
- 565.61 KB
- Format:
- Adobe Portable Document Format
- Description:
- file s00209024034329.pdf