Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique
Loading...
Date
Authors
Kumngern, Montree
Khateb, Fabian
Kulej, Tomasz
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
ORCID
Altmetrics
Abstract
In this paper, a new differential difference current conveyor (DDCC) with ultra-low voltage and low-power capability is presented. The DDCC is designed by using a non-tailed differential pair with multiple-input bulk-driven MOS transistor technique to obtain a rail-to-rail input common-mode swing and extremely low supply voltage. The MOS transistors biased in the sub-threshold region have been used to achieve extremely low power consumption. The performance of the proposed DDCC is evaluated by simulation results using SPICE program and MOS transistors parameters provided by a standard n-well 0.18 mu m CMOS process from TSMC. A rail-to-rail input common-mode range was shown and a high accuracy was expressed. The bandwidth was 2.2 kHz and the total harmonic distortion was 1% for an input signal with amplitude of 240 mV(p-p), obtained at supply voltage of 0.3 V and power dissipation of 28.6 nW. The proposed DDCC has been used to realize a sixth-order low-pass filter for application to electrocardiogram (ECG) applications. (C) 2020 Elsevier GmbH. All rights reserved.
In this paper, a new differential difference current conveyor (DDCC) with ultra-low voltage and low-power capability is presented. The DDCC is designed by using a non-tailed differential pair with multiple-input bulk-driven MOS transistor technique to obtain a rail-to-rail input common-mode swing and extremely low supply voltage. The MOS transistors biased in the sub-threshold region have been used to achieve extremely low power consumption. The performance of the proposed DDCC is evaluated by simulation results using SPICE program and MOS transistors parameters provided by a standard n-well 0.18 mu m CMOS process from TSMC. A rail-to-rail input common-mode range was shown and a high accuracy was expressed. The bandwidth was 2.2 kHz and the total harmonic distortion was 1% for an input signal with amplitude of 240 mV(p-p), obtained at supply voltage of 0.3 V and power dissipation of 28.6 nW. The proposed DDCC has been used to realize a sixth-order low-pass filter for application to electrocardiogram (ECG) applications. (C) 2020 Elsevier GmbH. All rights reserved.
In this paper, a new differential difference current conveyor (DDCC) with ultra-low voltage and low-power capability is presented. The DDCC is designed by using a non-tailed differential pair with multiple-input bulk-driven MOS transistor technique to obtain a rail-to-rail input common-mode swing and extremely low supply voltage. The MOS transistors biased in the sub-threshold region have been used to achieve extremely low power consumption. The performance of the proposed DDCC is evaluated by simulation results using SPICE program and MOS transistors parameters provided by a standard n-well 0.18 mu m CMOS process from TSMC. A rail-to-rail input common-mode range was shown and a high accuracy was expressed. The bandwidth was 2.2 kHz and the total harmonic distortion was 1% for an input signal with amplitude of 240 mV(p-p), obtained at supply voltage of 0.3 V and power dissipation of 28.6 nW. The proposed DDCC has been used to realize a sixth-order low-pass filter for application to electrocardiogram (ECG) applications. (C) 2020 Elsevier GmbH. All rights reserved.
Description
Keywords
Differential difference current conveyor , Subthreshold technique , Bulk-driven technique , Multiple-input bulk-driven technique , Low voltage and low power , High-order filter , Analog circuit , Differential difference current conveyor , Subthreshold technique , Bulk-driven technique , Multiple-input bulk-driven technique , Low voltage and low power , High-order filter , Analog circuit
Citation
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS. 2020, vol. 123, issue 1, IF: 2.924, p. 1-11.
https://www.sciencedirect.com/science/article/pii/S1434841120310669
https://www.sciencedirect.com/science/article/pii/S1434841120310669
Document type
Peer-reviewed
Document version
Accepted version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0002-9864-9830 