Detection of Malicious Network Traffic Behavior Using JA3 Fingerprints
but.event.date | 26.04.2022 | cs |
but.event.title | STUDENT EEICT 2022 | cs |
dc.contributor.author | Novák, Pavel | |
dc.contributor.author | Oujezský, Václav | |
dc.date.accessioned | 2022-12-06T13:21:59Z | |
dc.date.available | 2022-12-06T13:21:59Z | |
dc.date.issued | 2022 | cs |
dc.description.abstract | This paper presents a novel approach for classifying spoof network traffic based on JA3 fingerprint clustering. In particular, it concerns the detection of so-called zero-day malware. The proposed method does not work with known JA3 hashes. However, it compares the JA3 fingerprint of captured traffic with JA3 fingerprints of traffic with predefined criteria, such as the use of current cipher suites or protocol, for classification. | en |
dc.format | text | cs |
dc.format.extent | 194-197 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 194-197. ISBN 978-80-214-6030-0 | cs |
dc.identifier.doi | 10.13164/eeict.2022.194 | |
dc.identifier.isbn | 978-80-214-6030-0 | |
dc.identifier.uri | http://hdl.handle.net/11012/208635 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | clustering, detection, JA3, JA3s, malware | en |
dc.title | Detection of Malicious Network Traffic Behavior Using JA3 Fingerprints | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 194_eeict_2022.pdf
- Size:
- 1.11 MB
- Format:
- Adobe Portable Document Format
- Description: