Detection of Malicious Network Traffic Behavior Using JA3 Fingerprints

Loading...
Thumbnail Image

Date

Authors

Novák, Pavel
Oujezský, Václav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

This paper presents a novel approach for classifying spoof network traffic based on JA3 fingerprint clustering. In particular, it concerns the detection of so-called zero-day malware. The proposed method does not work with known JA3 hashes. However, it compares the JA3 fingerprint of captured traffic with JA3 fingerprints of traffic with predefined criteria, such as the use of current cipher suites or protocol, for classification.

Description

Citation

Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 194-197. ISBN 978-80-214-6030-0
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO