1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter

Loading...
Thumbnail Image

Authors

Kumngern, Montree
Suksaibul, Pichai
Khateb, Fabian
Kulej, Tomasz

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This paper presents a new mixed-mode universal filter based on a differential difference transconductance amplifier (DDTA). Unlike the conventional transconductance amplifier (TA), this DDTA has both advantages of the TA and the differential difference amplifier (DDA). The proposed filter can offer four-mode operations of second-order transfer functions into a single topology, namely, voltage-mode (VM), current-mode (CM), transadmittance-mode (TAM), and transimpedance-mode (TIM) transfer functions. Each operation mode offers five standard filtering responses; therefore, at least twenty filtering transfer functions can be obtained. For the filtering transfer functions, the matching conditions for the input and passive component are absent. The natural frequency and the quality factor can be set orthogonally and electronically controlled. The performance of the proposed topology was evaluated by PSPICE simulator using the 0.18 mu m CMOS technology from the Taiwan Semiconductor Manufacturing Company (TSMC). The voltage supply was 1.2 V and the power dissipation of the DDTA was 66 mu W. The workability of the filter was confirmed through experimental test by DDTA-based LM13600 discrete-component integrated circuits.
This paper presents a new mixed-mode universal filter based on a differential difference transconductance amplifier (DDTA). Unlike the conventional transconductance amplifier (TA), this DDTA has both advantages of the TA and the differential difference amplifier (DDA). The proposed filter can offer four-mode operations of second-order transfer functions into a single topology, namely, voltage-mode (VM), current-mode (CM), transadmittance-mode (TAM), and transimpedance-mode (TIM) transfer functions. Each operation mode offers five standard filtering responses; therefore, at least twenty filtering transfer functions can be obtained. For the filtering transfer functions, the matching conditions for the input and passive component are absent. The natural frequency and the quality factor can be set orthogonally and electronically controlled. The performance of the proposed topology was evaluated by PSPICE simulator using the 0.18 mu m CMOS technology from the Taiwan Semiconductor Manufacturing Company (TSMC). The voltage supply was 1.2 V and the power dissipation of the DDTA was 66 mu W. The workability of the filter was confirmed through experimental test by DDTA-based LM13600 discrete-component integrated circuits.

Description

Citation

SENSORS. 2022, vol. 22, issue 9, p. 1-21.
https://www.mdpi.com/1424-8220/22/9/3535

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO