Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation

dc.contributor.authorŠafaříková, Evacs
dc.contributor.authorEhlich, Jiřícs
dc.contributor.authorStříteský, Stanislavcs
dc.contributor.authorVala, Martincs
dc.contributor.authorWeiter, Martincs
dc.contributor.authorPacherník, Jiřícs
dc.contributor.authorKubala, Lukášcs
dc.contributor.authorVíteček, Jancs
dc.coverage.issue3cs
dc.coverage.volume23cs
dc.date.accessioned2023-01-18T15:55:11Z
dc.date.available2023-01-18T15:55:11Z
dc.date.issued2022-01-20cs
dc.description.abstractOrganic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.en
dc.formattextcs
dc.format.extent1-16cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationInternational Journal of Molecular Sciences. 2022, vol. 23, issue 3, p. 1-16.en
dc.identifier.doi10.3390/ijms23031107cs
dc.identifier.issn1422-0067cs
dc.identifier.other177314cs
dc.identifier.urihttp://hdl.handle.net/11012/204601
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofInternational Journal of Molecular Sciencescs
dc.relation.urihttps://www.mdpi.com/1422-0067/23/3/1107cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1422-0067/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectconductive polymeren
dc.subjectPEDOTen
dc.subjectPSSen
dc.subjectscreen printen
dc.subjectembryonic stem cellsen
dc.subjectelectrostimulationen
dc.titleConductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177314en
sync.item.dbtypeVAVen
sync.item.insts2023.01.18 16:55:10en
sync.item.modts2023.01.18 16:14:32en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Centrum materiálového výzkumucs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijms2301107.pdf
Size:
2.43 MB
Format:
Adobe Portable Document Format
Description:
ijms2301107.pdf