Emotion Recognition using AutoEncoders and Convolutional Neural Networks

dc.contributor.authorPrieto, Luis Antonio Beltrán
dc.contributor.authorKominkova Oplatkova, Zuzana
dc.coverage.issue1cs
dc.coverage.volume24cs
dc.date.accessioned2019-06-26T10:18:36Z
dc.date.available2019-06-26T10:18:36Z
dc.date.issued2018-06-01cs
dc.description.abstractEmotions demonstrate people's reactions to certain stimuli. Facial expression analysis is often used to identify the emotion expressed. Machine learning algorithms combined with artificial intelligence techniques have been developed in order to detect expressions found in multimedia elements, including videos and pictures. Advanced methods to achieve this include the usage of Deep Learning algorithms. The aim of this paper is to analyze the performance of a Convolutional Neural Network which uses AutoEncoder Units for emotion-recognition in human faces. The combination of two Deep Learning techniques boosts the performance of the classification system. 8000 facial expressions from the Radboud Faces Database were used during this research for both training and testing. The outcome showed that five of the eight analyzed emotions presented higher accuracy rates, higher than 90%.en
dc.formattextcs
dc.format.extent113-120cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2018 vol. 24, č. 1, s. 113-120. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2018.1.113en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/179232
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/31cs
dc.rights.accessopenAccessen
dc.subjectEmotion Recognitionen
dc.subjectConvolutional Neural Networksen
dc.subjectDeep Learningen
dc.subjectAutoEncodersen
dc.titleEmotion Recognition using AutoEncoders and Convolutional Neural Networksen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
31-Article Text-74-1-10-20190218.pdf
Size:
657.62 KB
Format:
Adobe Portable Document Format
Description:
Collections