Emotion Recognition using AutoEncoders and Convolutional Neural Networks

Loading...
Thumbnail Image

Authors

Prieto, Luis Antonio Beltrán
Kominkova Oplatkova, Zuzana

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Automation and Computer Science, Brno University of Technology

ORCID

Altmetrics

Abstract

Emotions demonstrate people's reactions to certain stimuli. Facial expression analysis is often used to identify the emotion expressed. Machine learning algorithms combined with artificial intelligence techniques have been developed in order to detect expressions found in multimedia elements, including videos and pictures. Advanced methods to achieve this include the usage of Deep Learning algorithms. The aim of this paper is to analyze the performance of a Convolutional Neural Network which uses AutoEncoder Units for emotion-recognition in human faces. The combination of two Deep Learning techniques boosts the performance of the classification system. 8000 facial expressions from the Radboud Faces Database were used during this research for both training and testing. The outcome showed that five of the eight analyzed emotions presented higher accuracy rates, higher than 90%.

Description

Citation

Mendel. 2018 vol. 24, č. 1, s. 113-120. ISSN 1803-3814
https://mendel-journal.org/index.php/mendel/article/view/31

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO