Explainable Spectrum Prediction Based on VMD-LSTM

Loading...
Thumbnail Image

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Radioengineering Society

ORCID

Altmetrics

Abstract

To improve the accuracy and interpretability of neural network enabled spectrum prediction, an explainable spectrum prediction framework based on Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks, integrated with the Shapley Additive Explanations (SHAP) method (VMD-LSTM), is proposed in this work. Firstly, the raw spectrum data is decomposed into multiple Intrinsic Mode Functions (IMFs) via VMD to reduce sequence complexity. These IMFs are then fed into the LSTM network in parallel to improve prediction accuracy. Secondly, the SHAP method is incorporated to evaluate the impact weights of individual IMF components on the prediction outcomes, revealing the model's decision-making logic. Finally, we weight the input data by multiplying each IMF by its SHAP value to optimize prediction performance. Simulation results based on real spectrum data demonstrate that the proposed VMD-LSTM significantly outperforms baseline models on the metrics of Weighted Quality Evaluation Index (WQE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and mean absolute error (MAE). By incorporating SHAP weights to refine the model input features, the framework not only provides transparent explanations for the black-box model but also reduces the average WQE, RMSE, and MAPE by 3.99%, 3.23%, and 3.67%, respectively.

Description

Citation

Radioengineering. 2026 vol. 35, iss. 1, p. 15-25. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2026/26_01_0015_0025.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO