Forward Adaptive Dual-Mode Quantizer Based on the First-Degree Spline Approximation and Embedded G.711 Codec

Loading...
Thumbnail Image
Date
2019-12
Authors
Peric, Zoran
Nikolic, Jelena
Denic, Bojan
Despotovic, Vladimir
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In this paper, we propose a novel model of dual-mode quantizer that combines the restricted and unrestricted forward adaptive piecewise linear scalar quantizers based on the first degree-spline functions, one of them being forward adaptive G.711 quantizer used as the unrestricted one. The analysis presented in the paper can be considered as our further research in the field of dual-mode quantization. In particular, in our novel model we utilize G.711 codec due to the compatibility reasons and we develop one completely novel model of restricted quantizer based on the first-degree spline approximation, which is optimized for the assumed Laplacian source so that to provide a minimal mean-squared error distortion. Moreover, unlike previous dual-model quantizer models that processed signals in frame-by-frame manner, our novel model utilizes frame/subframe processing of the signal in order to decrease the total bit rate. The theoretical analysis in a wide dynamic range of input signal variances reveals that the proposed model of quantizer is superior versus the unrestricted G.711 quantizer as well as other similar baselines having the same number of quantization levels. In addition, the results of the experimental analysis performed on the real speech signal show a good agreement with the theoretical ones.
Description
Citation
Radioengineering. 2019 vol. 28, č. 4, s. 729-739. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/19_04_0729_0739.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO