Cascade Structure of Digital Predistorter for Power Amplifier Linearization

Loading...
Thumbnail Image
Date
2015-12
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In this paper, a cascade structure of nonlinear digital predistorter (DPD) synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA) characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN), the polynomial perceptron network (PPN) and the radially pruned Volterra model (RPVM). At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.
Description
Citation
Radioengineering. 2015 vol. 24, č. 4, s. 1071-1076. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2015/15_04_1071_1076.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported License
http://creativecommons.org/licenses/by/3.0/
Collections
Citace PRO