Cascade Structure of Digital Predistorter for Power Amplifier Linearization

Loading...
Thumbnail Image

Authors

Solovyeva, Elena B.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

In this paper, a cascade structure of nonlinear digital predistorter (DPD) synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA) characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN), the polynomial perceptron network (PPN) and the radially pruned Volterra model (RPVM). At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

Description

Citation

Radioengineering. 2015 vol. 24, č. 4, s. 1071-1076. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2015/15_04_1071_1076.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported License
Citace PRO