On quantitativeness of diffraction-limited quantitative phase imaging

dc.contributor.authorBouchal, Zdeněkcs
dc.contributor.authorBouchal, Petrcs
dc.contributor.authorChmelíková, Terezacs
dc.contributor.authorFiurásek, Jaromírcs
dc.coverage.issue12cs
dc.coverage.volume9cs
dc.date.accessioned2025-06-11T07:56:18Z
dc.date.available2025-06-11T07:56:18Z
dc.date.issued2024-12-01cs
dc.description.abstractQuantitative phase imaging (QPI) has advanced by accurately quantifying phase shifts caused by weakly absorbing biological and artificial structures. Despite extensive research, the diffraction limits of QPI have not been established and examined. Hence, it remains unclear whether diffraction-affected QPI provides reliable quantification or merely visualizes phase objects, similar to phase contrast methods. Here, we develop a general diffraction phase imaging theory and show that it is intrinsically connected with Rayleigh's resolution theory. Our approach reveals the entanglement of phases under restoration, imposing diffraction bounds on spatial phase resolution and, unexpectedly, on phase accuracy. We prove that the phase accuracy depends on the size, shape, and absorption of objects forming the sample and significantly declines if the object size approaches the Rayleigh limit (a relative phase error of -16% for an Airy disk-sized object with low phase shift). We show that the phase accuracy limits can be enhanced at the cost of deteriorated phase resolution by attenuating the sample background light. The QPI diffraction limits are thoroughly examined in experiments with certified phase targets and biological cells. The study's relevance is underscored by results showing that the phase accuracy of some structures is lost (a relative phase error of -40%) even though they are spatially resolved (a phase visibility of 0.5). A reliable procedure is used to estimate phase errors in given experimental conditions, opening the way to mitigate errors' impact through data post-processing. Finally, the phase accuracy enhancement in super-resolution QPI is discovered, which has not been previously reported.en
dc.formattextcs
dc.format.extent126111-1-126111-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAPL Photonics. 2024, vol. 9, issue 12, p. 126111-1-126111-14.en
dc.identifier.doi10.1063/5.0232405cs
dc.identifier.issn2378-0967cs
dc.identifier.orcid0000-0002-6159-8099cs
dc.identifier.other197257cs
dc.identifier.researcheridG-8464-2014cs
dc.identifier.scopus47861033100cs
dc.identifier.urihttps://hdl.handle.net/11012/251917
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofAPL Photonicscs
dc.relation.urihttps://pubs.aip.org/aip/app/article/9/12/126111/3325120/On-quantitativeness-of-diffraction-limitedcs
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2378-0967/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectDIGITAL HOLOGRAPHIC MICROSCOPYen
dc.subjectCONTRASTen
dc.subjectRESOLUTIONen
dc.subjectCOHERENCEen
dc.titleOn quantitativeness of diffraction-limited quantitative phase imagingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LM/LM2023050cs
sync.item.dbidVAV-197257en
sync.item.dbtypeVAVen
sync.item.insts2025.06.11 09:56:18en
sync.item.modts2025.06.11 09:33:25en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonikacs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Centrální laboratoř Biofotonikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
126111_1_5.0232405.pdf
Size:
9.97 MB
Format:
Adobe Portable Document Format
Description:
file 126111_1_5.0232405.pdf